论文标题
部分可观测时空混沌系统的无模型预测
Effective field theory description of horizon-fluid determines the scrambling time
论文作者
论文摘要
当物质能量通过它们掉落时,黑洞的地平线与外部磁场相互作用。可以使用粘性流体方程来描述这种非平稳的黑洞视野。这项工作试图使用有效的现场理论方法来描述这一过程。这样的描述可以提供超过古典黑洞物理学以外的重要见解。在这项工作中,我们为4维,渐近平坦的爱因斯坦黑洞的地平线构建了低能量有效的现场理论描述。动态视野的有效场理论具有两种成分:与外部磁场和对称性相互作用涉及的自由度。如果非平台黑洞地平线上的理论是一个变形的完美磁场理论(CFT),则自然要满足融合近摩恩对称对称性($ {\ cal s} 1 $ diffemormorming)和具有长度尺度的双重要求。对于同质外部扰动,在最低顺序下,这会导致$(2 + 1) - $尺寸巨大的标量场,其中质量与CFT的变形程度有关。我们通过获得与有效场相对应的相关函数来确定质量,并将其与地平线流体的块状粘度相关联。此外,我们表明地平线流体的块状粘度系数决定了黑洞争夺所需的时间。此外,我们认为能量的物质场模式小于$ m _ {\ rm eff} $落入地平线的热量更慢。最后,我们为地平线流体构建了一个微观玩具模型,该模型以单个标量的自由度降低到有效的场理论。然后,我们讨论有效现场模型在了解后期黑洞中如何逃脱的有效性。
Black hole horizons interact with external fields when matter-energy falls through them. Such non-stationary black hole horizons can be described using viscous fluid equations. This work attempts to describe this process using effective field theory methods. Such a description can provide important insights beyond classical black hole physics. In this work, we construct a low-energy effective field theory description for the horizon fluid of a 4-dimensional, asymptotically flat, Einstein black hole. The effective field theory of the dynamical horizon has two ingredients: degrees of freedom involved in the interaction with external fields and symmetry. The dual requirements of incorporating near-horizon symmetries (${\cal S}1$ diffeomorphism) and possessing length scales due to external perturbations is naturally satisfied if the theory on the non-stationary black hole horizon is a deformed Conformal Field Theory (CFT). For the homogeneous external perturbations, at the lowest order, this leads to $(2 + 1)-$dimensional massive scalar field where the mass is related to the extent of the deformation of the CFT. We determine the mass by obtaining the correlation function corresponding to the effective field and relating it to the bulk viscosity of the horizon fluid. Additionally, we show that the coefficient of bulk viscosity of the horizon fluid determines the time required for black holes to scramble. Furthermore, we argue that matter-field modes with energy less than $m_{\rm eff}$ falling into the horizon thermalize more slowly. Finally, we construct a microscopic toy model for the horizon fluid that reduces to the effective field theory with a single scalar degree of freedom. We then discuss the usefulness of the effective field model in understanding how information escapes from a black hole at late times.