论文标题
部分可观测时空混沌系统的无模型预测
Intrinsic relationships of Quantum Resource Theories and their roles in Quantum Metrology
论文作者
论文摘要
量子资源理论使我们能够量化有用的量子现象,以开发用于检测的新协议,并确定最大程度地利用其用于实际任务的确切过程。这些理论旨在将物理现象(例如纠缠和量子相干性)转化为有用的特性,以执行与量子信息相关的具体任务。在本论文中,我们专注于纠缠,不和谐量子相关性和量子相干性的资源理论,这是迄今为止在量子信息理论中利用的最有趣的量子现象。我们首先详细介绍这些量子资源的理论工具,重点是最引人注目的技术和计算问题。从这个意义上讲,我们讨论了几种数学方法,这些方法解决了与其量化有关的一些问题,并给出了两分量量子系统的一些分析结果。我们还通过提取结合相应度量的链接来检查这些量子资源之间的内在连接。相比之下,量子技术的革命导致对量子计量学的兴趣日益增加,并且已经采用了量子纠缠来克服几种量子估计协议中的经典限制。在这项工作中,我们分析了量子相关性在提高未知参数准确性方面的作用。根据我们的结果,可以使用量子Fisher信息捕获相关性,并且可以利用量子不一致的相关性来确保相估计协议的准确性。本论文还包括对这些量子资源在开放量子系统的各种模型中的动力学的贡献。在我们的目标之一中,是研究环境对这些量子资源的影响,并获得保护它们免受内在腐蚀作用的技术。
Quantum resource theories allow us to quantify a useful quantum phenomenon, to develop new protocols for its detection and determine the exact processes that maximize its use for practical tasks. These theories aim at transforming physical phenomena, such as entanglement and quantum coherence, into useful properties for the execution of concrete tasks related to quantum information. In this thesis, we focus on the resource theories of entanglement, discord-like quantum correlations, and quantum coherence, the most intriguing quantum phenomena exploited so far in quantum information theory. We begin by presenting in detail the theoretical tools of these quantum resources, focusing on the most remarkable techniques and computational problems. In this sense, we discuss several mathematical methods that solve some problems related to their quantifications, and some analytical results for bipartite quantum systems are given. We also examine the intrinsic connections between these quantum resources by extracting the links that unite the corresponding measures. In contrast, the revolution of quantum technology has led to a growing interest in quantum metrology, and quantum entanglement has been employed to overcome the classical limit in several quantum estimation protocols. In this work, we analyze the role of quantum correlations beyond entanglement in improving the accuracy of an unknown parameter. According to our results, correlations can be captured using quantum Fisher information, and quantum discord correlations can be exploited to ensure the accuracy of phase estimation protocols. This thesis includes also the contributions on the dynamics of these quantum resources in various models of open quantum systems. Among our objectives, is to study the effects of the environment on these quantum resources and to obtain techniques to protect them from the effects of intrinsic decoherence.