论文标题

即使球对于球也很难

Shellability is hard even for balls

论文作者

Paták, Pavel, Tancer, Martin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The main goal of this paper is to show that shellability is NP-hard for triangulated d-balls (this also gives hardness for triangulated d-manifolds/d-pseudomanifolds with boundary) as soon as d is at least 3. This extends our earlier work with Goaoc, Patáková and Wagner on hardness of shellability of 2-complexes and answers some questions implicitly raised by Danaraj and Klee in 1978 and explicitly mentioned by Santamaría-Galvis and Woodroofe. Together with the main goal, we also prove that collapsibility is NP-hard for 3-complexes embeddable in the 3-space, extending an earlier work of the second author and answering an open question mentioned by Cohen, Fasy, Miller, Nayyeri, Peng and Walkington; and that shellability is NP-hard for 2-complexes embeddable in the 3-space, answering another question of Santamaría-Galvis and Woodroofe (in a slightly stronger form than what is given by the main result).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源