论文标题

部分可观测时空混沌系统的无模型预测

The rotation distance of brooms

论文作者

Cardinal, Jean, Pournin, Lionel, Valencia-Pabon, Mario

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The associahedron $\mathcal{A}(G)$ of a graph $G$ has the property that its vertices can be thought of as the search trees on $G$ and its edges as the rotations between two search trees. If $G$ is a simple path, then $\mathcal{A}(G)$ is the usual associahedron and the search trees on $G$ are binary search trees. Computing distances in the graph of $\mathcal{A}(G)$, or equivalently, the rotation distance between two binary search trees, is a major open problem. Here, we consider the different case when $G$ is a complete split graph. In that case, $\mathcal{A}(G)$ interpolates between the stellohedron and the permutohedron, and all the search trees on $G$ are brooms. We show that the rotation distance between any two such brooms and therefore the distance between any two vertices in the graph of the associahedron of $G$ can be computed in quasi-quadratic time in the number of vertices of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源