论文标题

部分可观测时空混沌系统的无模型预测

Restricted Chain-Order Polytopes via Combinatorial Mutations

论文作者

Clarke, Oliver, Higashitani, Akihiro, Zaffalon, Francesca

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study restricted chain-order polytopes associated to Young diagrams using combinatorial mutations. These polytopes are obtained by intersecting chain-order polytopes with certain hyperplanes. The family of chain-order polytopes associated to a poset interpolate between the order and chain polytopes of the poset. Each such polytope retains properties of the order and chain polytope; for example its Ehrhart polynomial. For a fixed Young diagram, we show that all restricted chain-order polytopes are related by a sequence of combinatorial mutations. Since the property of giving rise to the period collapse phenomenon is invariant under combinatorial mutations, we provide a large class of rational polytopes that give rise to period collapse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源