论文标题
部分可观测时空混沌系统的无模型预测
FedTune: A Deep Dive into Efficient Federated Fine-Tuning with Pre-trained Transformers
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Federated Learning (FL) is an emerging paradigm that enables distributed users to collaboratively and iteratively train machine learning models without sharing their private data. Motivated by the effectiveness and robustness of self-attention-based architectures, researchers are turning to using pre-trained Transformers (i.e., foundation models) instead of traditional convolutional neural networks in FL to leverage their excellent transfer learning capabilities. Despite recent progress, how pre-trained Transformer models play a role in FL remains obscure, that is, how to efficiently fine-tune these pre-trained models in FL and how FL users could benefit from this new paradigm. In this paper, we explore this issue and demonstrate that the fine-tuned Transformers achieve extraordinary performance on FL, and that the lightweight fine-tuning method facilitates a fast convergence rate and low communication costs. Concretely, we conduct a rigorous empirical study of three tuning methods (i.e., modifying the input, adding extra modules, and adjusting the backbone) using two types of pre-trained models (i.e., vision-language models and vision models) for FL. Our experiments show that 1) Fine-tuning the bias term of the backbone performs best when relying on a strong pre-trained model; 2) The vision-language model (e.g., CLIP) outperforms the pure vision model (e.g., ViT) and is more robust to the few-shot settings; 3) Compared to pure local training, FL with pre-trained models has a higher accuracy because it alleviates the problem of over-fitting. We will release our code and encourage further exploration of pre-trained Transformers and FL.