论文标题
自动热:用于室内和车辆的热舒适估算的数据集和基准
AutoTherm: A Dataset and Benchmark for Thermal Comfort Estimation Indoors and in Vehicles
论文作者
论文摘要
建筑物内部的热舒适性是一个经过充分研究的领域,在其中收集了对热舒适的人类判断,可用于自动舒适估计。但是,就热状态变化而言,室内场景相当静态,因此不能应用于动态条件,例如在车辆内部。在这项工作中,我们介绍了有关热舒适估计的建筑物和车载场景之间差距的发现。我们通过比较深层神经分类器来提供证据,以估算室内和车载条件的热舒适度。此外,我们介绍了一个时间数据集,用于室内预测,其中包含31个输入信号和自我标记的用户评分,并在一个自建筑气候室内通过18个受试者。对于车辆场景,我们获得了第二个数据集,其中包含来自BMW 3系列中20名受试者的人类判断。我们的实验结果表明,超过单个向量输入的时间序列数据的估计表现出色。利用现代机器学习架构使我们能够识别人类的热舒适状态并自动估算未来状态。我们提供有关培训基于网络的分类器的详细信息,并执行拟议数据集的初始性能基准。最终,我们将收集的数据集与公开可用的热舒适数据集进行了比较。
Thermal comfort inside buildings is a well-studied field where human judgment for thermal comfort is collected and may be used for automatic thermal comfort estimation. However, indoor scenarios are rather static in terms of thermal state changes and, thus, cannot be applied to dynamic conditions, e.g., inside a vehicle. In this work, we present our findings of a gap between building and in-vehicle scenarios regarding thermal comfort estimation. We provide evidence by comparing deep neural classifiers for thermal comfort estimation for indoor and in-vehicle conditions. Further, we introduce a temporal dataset for indoor predictions incorporating 31 input signals and self-labeled user ratings by 18 subjects in a self-built climatic chamber. For in-vehicle scenarios, we acquired a second dataset featuring human judgments from 20 subjects in a BMW 3 Series. Our experimental results indicate superior performance for estimations from time series data over single vector input. Leveraging modern machine learning architectures enables us to recognize human thermal comfort states and estimate future states automatically. We provide details on training a recurrent network-based classifier and perform an initial performance benchmark of the proposed dataset. Ultimately, we compare our collected dataset to publicly available thermal comfort datasets.