论文标题

对汽车排放预测的机器学习和深度学习技术的比较研究

A Comparative Study of Machine Learning and Deep Learning Techniques for Prediction of Co2 Emission in Cars

论文作者

Shah, Samveg, Thakar, Shubham, Jain, Kashish, Shah, Bhavya, Dhage, Sudhir

论文摘要

地球上所有人的最新问题是大气中温室气体浓度的增加。这些气体的浓度在上个世纪迅速上升,如果趋势继续下去,可能会导致许多不利的气候变化。政府已经实施了一些方法来遏制这种二氧化碳量更高的过程,即一种温室气体。但是,有越来越多的证据表明,政府提供的二氧化碳数量不能准确反映道路上的汽车的性能。我们使用人工智能技术改善以前基本过程的建议需要根本性的解决方案,但考虑到这种情况,它符合该法案。为了确定哪种算法和模型产生最大的结果,我们比较了所有算法,并探索了一种新颖的结合方法。此外,这可以用来预言全球温度的上升和采取关键的政策决策,例如采用电动汽车。为了估计车辆的排放,我们在大量数据集中使用了机器学习,深度学习和集合学习。

The most recent concern of all people on Earth is the increase in the concentration of greenhouse gas in the atmosphere. The concentration of these gases has risen rapidly over the last century and if the trend continues it can cause many adverse climatic changes. There have been ways implemented to curb this by the government by limiting processes that emit a higher amount of CO2, one such greenhouse gas. However, there is mounting evidence that the CO2 numbers supplied by the government do not accurately reflect the performance of automobiles on the road. Our proposal of using artificial intelligence techniques to improve a previously rudimentary process takes a radical tack, but it fits the bill given the situation. To determine which algorithms and models produce the greatest outcomes, we compared them all and explored a novel method of ensembling them. Further, this can be used to foretell the rise in global temperature and to ground crucial policy decisions like the adoption of electric vehicles. To estimate emissions from vehicles, we used machine learning, deep learning, and ensemble learning on a massive dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源