论文标题
用于机器人任务计划的模拟心理图像
Simulated Mental Imagery for Robotic Task Planning
论文作者
论文摘要
机器人技术中的任务计划的传统AI规划方法需要象征性编码的域描述。虽然在定义明确的方案以及人类解剖方面有力,但设置这一点需要大量的努力。与此不同的是,大多数日常计划任务是通过凭直觉来解决不同计划步骤的心理图像来解决的。在这里,我们建议在仅需要有限的执行精度的情况下,也可以将相同的方法用于机器人。在当前的研究中,我们提出了一种新型的子符号方法,称为“模拟心理图像”(SIMIP),该方法由对“想象的”图像进行的感知,模拟动作,成功检查和重新规划组成。我们表明,可以通过结合常规的卷积神经网络和生成性对抗网络来以算法的合理方式实施基于心理图像的计划。通过这种方法,机器人可以使用最初现有的场景来生成无符号域描述的动作计划的能力,而同时计划仍然可以进行人解释,这与深度加强学习不同,这是另一种符合符号的方法。我们从真实场景中创建一个数据集,以解决包装问题,即必须正确将不同的对象放入不同的目标插槽中。可以量化该算法的效率和成功率。
Traditional AI-planning methods for task planning in robotics require a symbolically encoded domain description. While powerful in well-defined scenarios, as well as human-interpretable, setting this up requires substantial effort. Different from this, most everyday planning tasks are solved by humans intuitively, using mental imagery of the different planning steps. Here we suggest that the same approach can be used for robots, too, in cases which require only limited execution accuracy. In the current study, we propose a novel sub-symbolic method called Simulated Mental Imagery for Planning (SiMIP), which consists of perception, simulated action, success-checking and re-planning performed on 'imagined' images. We show that it is possible to implement mental imagery-based planning in an algorithmically sound way by combining regular convolutional neural networks and generative adversarial networks. With this method, the robot acquires the capability to use the initially existing scene to generate action plans without symbolic domain descriptions, while at the same time plans remain human-interpretable, different from deep reinforcement learning, which is an alternative sub-symbolic approach. We create a dataset from real scenes for a packing problem of having to correctly place different objects into different target slots. This way efficiency and success rate of this algorithm could be quantified.