论文标题

SWIN-SFTNET:使用SWIN Transformer进行整个乳房微质量分割的空间特征扩展和聚集

SWIN-SFTNet : Spatial Feature Expansion and Aggregation using Swin Transformer For Whole Breast micro-mass segmentation

论文作者

Kamran, Sharif Amit, Hossain, Khondker Fariha, Tavakkoli, Alireza, Bebis, George, Baker, Sal

论文摘要

将各种质量形状和大小纳入训练深度学习架构中,使乳房质量分割变得具有挑战性。此外,不规则形状质量的手动分割是耗时且容易出错的。尽管深层神经网络在乳腺质量分割方面表现出色,但在细分微质量方面失败了。在本文中,我们提出了一种新型的U-NET形状的变压器结构,称为Swin-Sftnet,该体系结构在基于乳房乳腺X线摄影的微质量分段中优于最先进的体系结构。首先,为了捕获全局上下文,我们设计了一种新型的空间特征扩展和聚合块(SFEA),该块将顺序线性贴片转换为结构化的空间特征。接下来,我们将其与Swin Transformer块提取的本地线性特征结合使用,以提高整体精度。我们还结合了一种新颖的嵌入损失,该损失计算了编码器和解码器块的线性特征嵌入之间的相似性。通过这种方法,我们在CBIS-DDSM上获得了更高的分割骰子,在INBREAST上获得3.10%的骰子,在InBreast测试数据集上,CBIS预培训模型上的分割骰子和3.13%的分段骰子。

Incorporating various mass shapes and sizes in training deep learning architectures has made breast mass segmentation challenging. Moreover, manual segmentation of masses of irregular shapes is time-consuming and error-prone. Though Deep Neural Network has shown outstanding performance in breast mass segmentation, it fails in segmenting micro-masses. In this paper, we propose a novel U-net-shaped transformer-based architecture, called Swin-SFTNet, that outperforms state-of-the-art architectures in breast mammography-based micro-mass segmentation. Firstly to capture the global context, we designed a novel Spatial Feature Expansion and Aggregation Block(SFEA) that transforms sequential linear patches into a structured spatial feature. Next, we combine it with the local linear features extracted by the swin transformer block to improve overall accuracy. We also incorporate a novel embedding loss that calculates similarities between linear feature embeddings of the encoder and decoder blocks. With this approach, we achieve higher segmentation dice over the state-of-the-art by 3.10% on CBIS-DDSM, 3.81% on InBreast, and 3.13% on CBIS pre-trained model on the InBreast test data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源