论文标题
分区代数的细胞亚代数
Cellular subalgebras of the partition algebra
论文作者
论文摘要
我们使用Graham和Lehrer的细胞代数以及分解为半图来描述各种图表及其表示理论。特别是,我们显示了此处调查的图表代数是所有细胞代数并将其细胞模块参数化。我们提供了一种新的结构,以从我们称为蜂窝花圈产品的Rook Brauer代数的一般蜂窝代数和亚代代数中构建新的蜂窝代数。
We describe various diagram algebras and their representation theory using cellular algebras of Graham and Lehrer and the decomposition into half diagrams. In particular, we show the diagram algebras surveyed here are all cellular algebras and parameterize their cell modules. We give a new construction to build new cellular algebras from a general cellular algebra and subalgebras of the rook Brauer algebra that we call the cellular wreath product.