论文标题

来自单速度Baer-Nunziato和Kapila系统的两相多孔介质系统的定量推导

Quantitative derivation of a two-phase porous media system from the one-velocity Baer-Nunziato and Kapila systems

论文作者

Crin-Barat, Timothée, Shou, Ling-Yun, Tan, Jin

论文摘要

在本文中,我们在较小的数据全球时间解决方案的背景下定量研究了两种类型的放松过程,以用于可压缩的单速度多流体模型。首先,我们证明,从单速度BAER-NUNZIATO系统到Kapila模型的压力松散限制是合理的,因为压力松弛参数倾向于与与速度方程中建模的摩擦力相关的时间 - 递延参数均匀地零。这种统一性使我们能够进一步考虑Kapila模型的时间递延限制。更确切地说,我们表明,随着时间删除参数趋向于零,Kapila系统的扩散时间响应的解会收敛到两相多孔介质类型系统的解决方案。对于两个放松限制,我们都表现出明确的收敛速度。 我们的存在结果证明是基于通过Littlewood-Paley分解的详尽的低频和高频分析,其中包括三种主要成分:针对线性问题的精制频谱分析,以确定频率阈值明确地确定频率的阈值,从而在时间 - 延迟参数中的引入较低的损失,从而超出了较低的损失。以及高频区域中重新归一化的能量估计,以取消高阶非线性项。为了显示收敛速率,我们发现了几个辅助未知数,这些辅助未知数揭示了更好的结构。总之,在过度阻尼现象的背景下,我们的方法可以应用于具有粗糙系数的一类非对称部分耗散双曲线系统。它扩展了Danchin和第一作者的最新结果[15,16]。

In this paper we investigate two types of relaxation processes quantitatively in the context of small data global-in-time solutions for compressible one-velocity multi-fluid models. First, we justify the pressure-relaxation limit from a one-velocity Baer-Nunziato system to a Kapila model as the pressure-relaxation parameter tends to zero, in a uniform manner with respect to the time-relaxation parameter associated to the friction forces modeled in the equation of the velocity. This uniformity allows us to further consider the time-relaxation limit for the Kapila model. More precisely, we show that the diffusely time-rescaled solution of the Kapila system converges to the solution of a two-phase porous media type system as the time-relaxation parameter tends to zero. For both relaxation limits, we exhibit explicit convergence rates. Our proof of existence results are based on an elaborate low-frequency and high-frequency analysis via the Littlewood-Paley decomposition and it includes three main ingredients: a refined spectral analysis for the linearized problem to determine the threshold of frequencies explicitly in terms of the time-relaxation parameter, the introduction of an effective flux in the low-frequency region to overcome the loss of parameters due to the overdamping phenomenon, and the renormalized energy estimates in the high-frequency region to cancel higher-order nonlinear terms. To show the convergence rates, we discover several auxiliary unknowns that reveal better structures. In conclusion, our approach may be applied to a class of non-symmetric partially dissipative hyperbolic system with rough coefficients which do not have any time-integrability, in the context of overdamping phenomenon. It extends the latest results of Danchin and the first author [15, 16].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源