论文标题

RF-Annotate:上下文中常见对象的自动rf监督图像注释

RF-Annotate: Automatic RF-Supervised Image Annotation of Common Objects in Context

论文作者

Sie, Emerson, Vasisht, Deepak

论文摘要

无线标签越来越多地用于跟踪和确定感兴趣的常见项目,例如零售商品,食品,药品,服装,书籍,文档,钥匙,设备等。同时,需要使用此类项目进行标记的视觉数据,目的是训练对象检测和识别模型,用于在家庭,仓库,商店,库,药房等中运行的机器人。在本文中,我们问:我们是否可以利用此类标签的跟踪和识别功能作为机器人感知任务的大规模自动图像注释系统的基础?我们提出了RF-Annotate,这是一种自主像素图像注释的管道,它使机器人可以在环境中遇到的对象遇到这些对象的标记的视觉数据。我们的管道使用未修改的商品RFID读取器和RGB-D摄像机,并利用移动机器人平台提供的任意小规模动作,以将RFID映射到场景中的相应对象。我们唯一的假设是,环境中感兴趣的对象是预先标记的,廉价的无电池RFID,每股价格为3-15美分。我们证明了管道对在各种室内环境中具有共同物体的桌面场景的几个RGB-D序列的功效。

Wireless tags are increasingly used to track and identify common items of interest such as retail goods, food, medicine, clothing, books, documents, keys, equipment, and more. At the same time, there is a need for labelled visual data featuring such items for the purpose of training object detection and recognition models for robots operating in homes, warehouses, stores, libraries, pharmacies, and so on. In this paper, we ask: can we leverage the tracking and identification capabilities of such tags as a basis for a large-scale automatic image annotation system for robotic perception tasks? We present RF-Annotate, a pipeline for autonomous pixel-wise image annotation which enables robots to collect labelled visual data of objects of interest as they encounter them within their environment. Our pipeline uses unmodified commodity RFID readers and RGB-D cameras, and exploits arbitrary small-scale motions afforded by mobile robotic platforms to spatially map RFIDs to corresponding objects in the scene. Our only assumption is that the objects of interest within the environment are pre-tagged with inexpensive battery-free RFIDs costing 3-15 cents each. We demonstrate the efficacy of our pipeline on several RGB-D sequences of tabletop scenes featuring common objects in a variety of indoor environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源