论文标题

使用通用目标标签开关攻击对象检测器

Attacking Object Detector Using A Universal Targeted Label-Switch Patch

论文作者

Shapira, Avishag, Bitton, Ron, Avraham, Dan, Zolfi, Alon, Elovici, Yuval, Shabtai, Asaf

论文摘要

在过去的几年中,对针对基于深度学习的对象探测器(OD)的对抗性攻击已经进行了广泛的研究。这些攻击会导致模型通过在目标对象或框架内的任何地方放置一个包含对抗模式的补丁来做出错误的预测。但是,先前的一项研究都没有提出对OD的错误分类攻击,其中贴片应用于目标对象。在这项研究中,我们提出了一种针对最先进的对象检测器Yolo的新颖,通用,有针对性的,标签开关的攻击。在我们的攻击中,我们使用(i)量身定制的投影函数来使对抗贴片在图像中的多个目标对象(例如汽车)中放置,每个目标对象与相机相对于相机的距离可能不同,或者与相机相对于相对的视角不同,并且(ii)能够更改攻击对象标签的唯一损失功能。在数字域中训练的拟议的通用贴片可转移到物理领域。我们使用不同类型的对象检测器,不同相机捕获的不同视频流以及各种目标类进行了广泛的评估,并评估了物理域中对抗贴片的不同配置。

Adversarial attacks against deep learning-based object detectors (ODs) have been studied extensively in the past few years. These attacks cause the model to make incorrect predictions by placing a patch containing an adversarial pattern on the target object or anywhere within the frame. However, none of prior research proposed a misclassification attack on ODs, in which the patch is applied on the target object. In this study, we propose a novel, universal, targeted, label-switch attack against the state-of-the-art object detector, YOLO. In our attack, we use (i) a tailored projection function to enable the placement of the adversarial patch on multiple target objects in the image (e.g., cars), each of which may be located a different distance away from the camera or have a different view angle relative to the camera, and (ii) a unique loss function capable of changing the label of the attacked objects. The proposed universal patch, which is trained in the digital domain, is transferable to the physical domain. We performed an extensive evaluation using different types of object detectors, different video streams captured by different cameras, and various target classes, and evaluated different configurations of the adversarial patch in the physical domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源