论文标题

基于模型的预测不确定性的无监督域的适应

Unsupervised Domain Adaptation Based on the Predictive Uncertainty of Models

论文作者

Lee, JoonHo, Lee, Gyemin

论文摘要

无监督的域适应性(UDA)旨在改善分布与源域的分布变化的目标域中的预测性能。 UDA的关键原理是最大程度地减少源和目标域之间的差异。为了遵循此原则,许多方法采用域歧视器来匹配特征分布。一些最近的方法评估了目标样本的两个预测之间的差异,以检测那些偏离源分布的预测。但是,它们的性能受到限制,因为它们要么与边缘分布相匹配,要么保守地衡量差异。在本文中,我们提出了一种新颖的UDA方法,该方法学习了最小化域差异的域不变特征。我们将模型不确定性作为域差异的量度。我们基于模型不确定性(MUDA)的UDA方法采用了贝叶斯框架,并提供了一种有效的方法来通过Monte Carlo辍学采样来评估模型不确定性。图像识别任务的经验结果表明,我们的方法优于现有的最新方法。我们还将MUDA扩展到多源域的适应问题。

Unsupervised domain adaptation (UDA) aims to improve the prediction performance in the target domain under distribution shifts from the source domain. The key principle of UDA is to minimize the divergence between the source and the target domains. To follow this principle, many methods employ a domain discriminator to match the feature distributions. Some recent methods evaluate the discrepancy between two predictions on target samples to detect those that deviate from the source distribution. However, their performance is limited because they either match the marginal distributions or measure the divergence conservatively. In this paper, we present a novel UDA method that learns domain-invariant features that minimize the domain divergence. We propose model uncertainty as a measure of the domain divergence. Our UDA method based on model uncertainty (MUDA) adopts a Bayesian framework and provides an efficient way to evaluate model uncertainty by means of Monte Carlo dropout sampling. Empirical results on image recognition tasks show that our method is superior to existing state-of-the-art methods. We also extend MUDA to multi-source domain adaptation problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源