论文标题
Palatini Chern-Simons中的手性重力波
Chiral Gravitational Waves in Palatini Chern-Simons
论文作者
论文摘要
我们使用palatini公式研究了Chern-Simons(CS)的均等高度重力理论,其中指标和连接被视为独立领域。我们首先表明palatini cs重力导致运动的一阶导数方程,因此避免了公制形式主义中CS重力的典型不稳定性。作为初始应用,我们分析了Palatini CS重力中重力波(GWS)的宇宙论繁殖。我们表明,由于平均值破裂,GWS的极化在传播过程中产生了两种影响:振幅双折射(会改变偏振椭圆度)和速度双折射(旋转极化平面)。虽然已知振幅双折射存在于公制形式主义中的CS重力中,但公制CS重力中不存在速度双折射,但由于左手和右手的GW极化的事实,现在出现在Palatini CS中,具有不同的分散关系。在与一般相对论(GR)的小偏差的近似中,我们确实发现速度双折射至少在CS耦合参数$α$中至少四边形,而振幅双折射以$ $α$的形式出现。这意味着振幅双折射将是Palatini CS中最相关的效果,因此该模型的行为与公制CS相似。我们通过将电流限制应用于palatini CS上的幅度和速度双折射,并表明来自振幅双折射的人会带来最紧密的界限,从而确认了这一点。
We study the parity-breaking higher-curvature gravity theory of Chern-Simons (CS), using the Palatini formulation in which the metric and connection are taken to be independent fields. We first show that Palatini CS gravity leads to first-order derivative equations of motion and thus avoid the typical instabilities of CS gravity in the metric formalism. As an initial application, we analyze the cosmological propagation of gravitational waves (GWs) in Palatini CS gravity. We show that, due to parity breaking, the polarizations of GWs suffer two effects during propagation: amplitude birefringence (which changes the polarization ellipticity) and velocity birefringence (which rotates the polarization plane). While amplitude birefringence is known to be present in CS gravity in the metric formalism, velocity birefringence is not present in metric CS gravity, but now appears in Palatini CS due to the fact that left-handed and right-handed GW polarizations have a different dispersion relation. In the approximation of small deviations from General Relativity (GR), we do find however that velocity birefringence appears at least quadratically in the CS coupling parameter $α$, while amplitude birefringence appears linearly in $α$. This means that amplitude birefringence will be the most relevant effect in Palatini CS and hence this model will behave similarly to metric CS. We confirm this by applying current constraints on amplitude and velocity birefringence to Palatini CS, and showing that those from amplitude birefringence give the tightest bounds.