论文标题
半线性klein的数值准确性和稳定性 - de Sitter Spacetime中的Gordon方程
Numerical accuracy and stability of semilinear Klein--Gordon equation in de Sitter spacetime
论文作者
论文摘要
在Sitter时空中进行了半连接klein方程的数值模拟。我们使用Klein-Gordon方程的两种结构具有离散形式。两种形式之间的差异是差异项的离散化。我们表明,其中一种形式具有较高的数值稳定性和相对于网格的二阶数值准确性,并且我们解释了其他形式的不稳定性的原因。
Numerical simulations of the semilinear Klein--Gordon equation in the de Sitter spacetime are performed. We use two structure-preserving discrete forms of the Klein--Gordon equation. The disparity between the two forms is the discretization of the differential term. We show that one of the forms has higher numerical stability and second-order numerical accuracy with respect to the grid, and we explain the reason for the instability of the other form.