论文标题

从银河化学演化到与核心折叠超新星同步的宇宙超新星速率限于狭窄的祖细胞质量范围

From Galactic Chemical Evolution to Cosmic Supernova Rates Synchronized with Core-Collapse Supernovae Limited to the Narrow Progenitor Mass Range

论文作者

Tsujimoto, Takuji

论文摘要

巨大的($ \ geq $ 8 $ m_ \ odot $)星星在两种命运之一中灭亡:核心折叠超新星(CCSNE),它们释放合成重型元素或失败的超新星,从而形成黑洞。在常规的银河化学演化(GCE)方案中,大量巨大的恒星,例如,在8-100 $ M _ {\ odot}的质量范围内的所有恒星中,假定$可以用核合成产物富集银河系。但是,这种假设与观察结果相冲突,即,很少有ccsne的祖细胞明星比$ \ sim $ 18 $ m _ {\ odot}。$在这里,我们表明,当地薄磁盘所塑造的化学特性与通过ccsne限制了ccsne for and ccsne for and ccsne for and ccsne to and ccsne to and ccsn offerics to and ccs new gallage can rangigm cans new galla cars的预测既可以兼容。 磁盘。这种新的GCE模型预测,爆发星形事件$ - $ - $ $ $ $ $ $ $ $ - 在厚的磁盘$ - $ - $ - $中产生的低质量CCSNE比本地确定的规范初始质量质量功能的低质量CCSNE。这一发现表明,早期型星系中CCSNE的速率很高,这反映了CCSN速率的独特宇宙历史。在这些星系对早期宇宙中宇宙恒星形成速率的大量贡献中,我们预测,与宇宙恒星形成成本相比,红移的CCSN速率的斜率更大。该预测的红移进化与0 $ \ lyssim $ z $ \ lyssim $ 0.8的测量率非常吻合;但是,其预测的CCSN速率是$ Z $的CCSN速率,以获取未来调查中更精确的数据的更精确数据。

Massive ($\geq$8 $M_\odot$) stars perish via one of two fates: core-collapse supernovae (CCSNe), which release synthesized heavy elements, or failed supernovae, thereby forming black holes. In the conventional Galactic chemical evolution (GCE) scheme, a substantial portion of massive stars, e.g., all stars in the mass range of 8-100 $M_{\odot},$ are assumed to enrich the Galaxy with their nucleosynthetic products. However, this hypothesis conflicts with the observations, namely, few CCSNe whose progenitor stars are more massive than $\sim$18 $M_{\odot}.$ Here, we show that the chemical characteristics shaped by local thin disk stars are compatible with the predictions by enrichment via CCSNe limited to less massive progenitors in the new paradigm of Galactic dynamics that allows stars to migrate from the inner disk. This renewed GCE model predicts that the bursting star formation events$-$which are considered to take place in the Galactic bulge as well as in the thick disk$-$generate more numerous low-mass CCSNe than those expected from the locally determined canonical initial mass function. This finding suggests a high rate of CCSNe in early-type galaxies, which reflects a unique cosmic history of the CCSN rate. With considerable contributions from these galaxies to the cosmic star formation rates in the early Universe, we predict a more steeply increasing slope of the CCSN rate with increasing redshift than that in proportion to cosmic star formation. This predicted redshift evolution agrees well with the measured rates for 0 $\lesssim$ z $\lesssim$ 0.8; however, its predicted CCSN rate for higher-$z$ calls for more precise data from future surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源