论文标题
狄拉克操作员带有指数腐烂的熵
Dirac operators with exponentially decaying entropy
论文作者
论文摘要
We prove that the Weyl function of the one-dimensional Dirac operator on the half-line $\mathbb{R}_+$ with exponentially decaying entropy extends meromorphically into the horizontal strip $\{0\ge \mbox{Im}\,z > -δ\}$ for some $δ> 0$ depending on the rate of decay.如果熵速度非常迅速,则在整个复合面上,相应的Weyl功能被证明是Meromormormormormormorphic。在这种情况下,我们表明Weyl功能(散射共振)的极点独特地确定了操作员。
We prove that the Weyl function of the one-dimensional Dirac operator on the half-line $\mathbb{R}_+$ with exponentially decaying entropy extends meromorphically into the horizontal strip $\{0\ge \mbox{Im}\,z > -δ\}$ for some $δ> 0$ depending on the rate of decay. If the entropy decreases very rapidly then the corresponding Weyl function turns out to be meromorphic in the whole complex plane. In this situation we show that poles of the Weyl function (scattering resonances) uniquely determine the operator.