论文标题

泰勒分散在任意形状的轴对称通道中

Taylor dispersion in arbitrarily shaped axisymmetric channels

论文作者

Chang, Ray, Santiago, Juan G.

论文摘要

在长薄轴对称通道中溶质的对流分散对于分析和设计各种设备(包括化学分离系统和微流体芯片)很重要。尽管在各种情况下对泰勒分散体进行了广泛的分析,但大多数研究都集中在长期分散行为上,并且无法捕获通道中空间变化的溶质区的短暂演化。在当前的研究中,我们分析了泰勒 - 阿里斯分散的任意轴对称通道。我们根据两个耦合的普通微分方程(ODE)来得出溶液动力学的表达式。这两种ODE允许预测溶质区域的平均位置和轴向(标准偏差)宽度的时间演变,这是通道几何形状的函数。我们将我们的预测与布朗动力学模拟进行比较和基准测试。我们还介绍了溶质宽度的瞬态正轴向生长与负轴向生长的物理状态的分析描述。最后,为了进一步证明分析的实用性,我们演示了一种方法来设计通道几何形状,以在时空和时间上实现所需的溶质宽度分布。我们应用后者分析来产生几何形状,从而产生恒定的轴向宽度和第二个几何形状,从而导致空间中正弦的轴向差异。

Advective dispersion of solutes in long thin axisymmetric channels is important to the analysis and design of a wide range of devices, including chemical separation systems and microfluidic chips. Despite extensive analysis of Taylor dispersion in various scenarios, most studies focused on long-term dispersion behavior and cannot capture the transient evolution of solute zone across the spatial variations in the channel. In the current study, we analyze the Taylor-Aris dispersion for arbitrarily shaped axisymmetric channels. We derive an expression for solute dynamics in terms of two coupled ordinary differential equations (ODEs). These two ODEs allow prediction of the time evolution of the mean location and axial (standard deviation) width of the solute zone as a function of the channel geometry. We compare and benchmark our predictions with Brownian dynamics simulations for a variety of cases including linearly expanding/converging channels and periodic channels. We also present an analytical description of the physical regimes of transient positive versus negative axial growth of solute width. Finally, to further demonstrate the utility of the analysis, we demonstrate a method to engineer channel geometries to achieve desired solute width distributions over space and time. We apply the latter analysis to generate a geometry that results in a constant axial width and a second geometry that results in a sinusoidal axial variance in space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源