论文标题
网格ICRH等离子体推进器的分析和粒子模拟
Analysis and Particle-in-Cell Simulation of Gridded ICRH Plasma Thruster
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Large-payload deep space missions are impractical with current rocket propulsion technologies in use. Chemical thrusters yield a high thrust but low efficiency while ion thrusters are efficient but provide too little thrust for large satellites and manned spacecraft. Plasma propulsion is a viable alternative with a higher thrust than electric ion thrusters and specific impulse far exceeding those of chemical rocket engines. In this paper, a hybrid thruster is explored which affords the high mass flow rate of plasma thrusters while maximizing the specific impulse. The two primary processes of this system are the ion cyclotron resonance heating of plasma and subsequent electrostatic acceleration of ions with gridded electrodes. Through a particle-in-cell simulation of these two components, the exhaust velocities of Xenon, Argon, and Helium are compared. It has been found that while the combination of systems results in a far greater exhaust velocity, the acceleration is largely from the gridded electrodes, and thus Xenon is the most suitable propellant with a specific impulse upward of 4200 s. Advancements in nuclear fusion and fission technologies will facilitate the deployment of high-power plasma thrusters that will enable spacecraft to travel farther and faster in the solar system.