论文标题
彩虹甚至循环
Rainbow even cycles
论文作者
论文摘要
我们证明,在某些固定的$ n $ vertex套件上,每个家庭(不一定是不同的)甚至循环$ d_1,\ dotsc,\ dotsc,d _ {\ lfloor 1.2(n-1)\ rfloor+1} $都有一个$ n $ vertex套件的彩虹均匀循环(这是从不同的$ d_i $ d_i $'s cycy a verce a verce a vercece vevercome(也就是一个不同的循环)。这解决了Aharoni,Briggs,Holzman和Jiang的空缺问题。此外,对于每个正整数$ n $来说,最大可能是结果。
We prove that every family of (not necessarily distinct) even cycles $D_1, \dotsc, D_{\lfloor 1.2(n-1) \rfloor+1}$ on some fixed $n$-vertex set has a rainbow even cycle (that is, a set of edges from distinct $D_i$'s, forming an even cycle). This resolves an open problem of Aharoni, Briggs, Holzman and Jiang. Moreover, the result is best possible for every positive integer $n$.