论文标题

交通摄像机:用于交通流部门的多功能数据集

TrafficCAM: A Versatile Dataset for Traffic Flow Segmentation

论文作者

Deng, Zhongying, Chen, Yanqi, Liu, Lihao, Wang, Shujun, Ke, Rihuan, Schonlieb, Carola-Bibiane, Aviles-Rivero, Angelica I

论文摘要

交通流量分析正在彻底改变交通管理。合格的交通流数据,交通控制局可以为驾驶员提供实时警报,为最快的路线提供建议,从而优化运输物流并减少拥塞。现有的流量流数据集有两个主要限制。它们具有有限数量的类别,通常仅限于一种类型的车辆,并且缺乏未标记的数据。在本文中,我们介绍了一个新的基准流量流图像数据集,称为“交通车”。我们的数据集通过两个主要亮点来区分自己。首先,交通车提供像素级和实例级别的语义标签以及各种类型的车辆和行人。它由八个带有固定相机的印度城市的街道中记录的大量且多样化的视频序列组成。其次,交通车旨在建立一个新的基准,用于开发完全监督的任务,重要的是半监督的学习技术。这是第一个提供大量未标记数据的数据集,有助于在低成本注释要求下更好地捕获流量流资格。更确切地说,我们的数据集具有4,402个图像帧,带有语义和实例注释以及59,944个未标记的图像帧。我们通过在四种不同的设置下进行几种最先进的方法来验证新数据集:完全监督的语义和实例细分,以及半监督的语义和实例分段任务。我们的基准数据集将发布。

Traffic flow analysis is revolutionising traffic management. Qualifying traffic flow data, traffic control bureaus could provide drivers with real-time alerts, advising the fastest routes and therefore optimising transportation logistics and reducing congestion. The existing traffic flow datasets have two major limitations. They feature a limited number of classes, usually limited to one type of vehicle, and the scarcity of unlabelled data. In this paper, we introduce a new benchmark traffic flow image dataset called TrafficCAM. Our dataset distinguishes itself by two major highlights. Firstly, TrafficCAM provides both pixel-level and instance-level semantic labelling along with a large range of types of vehicles and pedestrians. It is composed of a large and diverse set of video sequences recorded in streets from eight Indian cities with stationary cameras. Secondly, TrafficCAM aims to establish a new benchmark for developing fully-supervised tasks, and importantly, semi-supervised learning techniques. It is the first dataset that provides a vast amount of unlabelled data, helping to better capture traffic flow qualification under a low cost annotation requirement. More precisely, our dataset has 4,402 image frames with semantic and instance annotations along with 59,944 unlabelled image frames. We validate our new dataset through a large and comprehensive range of experiments on several state-of-the-art approaches under four different settings: fully-supervised semantic and instance segmentation, and semi-supervised semantic and instance segmentation tasks. Our benchmark dataset will be released.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源