论文标题
Wendelstein 7-X配置中的理想MHD解决方案操作员的物理调查神经网络
Physics-regularized neural network of the ideal-MHD solution operator in Wendelstein 7-X configurations
论文作者
论文摘要
构建3D磁水动力学(MHD)平衡的计算成本是恒星研究和设计中的限制因素之一。尽管已经提出了数据驱动的方法来提供快速的3D MHD平衡,但重建平衡属性的准确性尚不清楚。在这项工作中,我们描述了一个人工神经网络(NN),该神经网络迅速近似于Wendelstein 7-X(W7-X)配置中的理想MHD解决方案操作员。该模型通过构造实现平衡对称性。 MHD力剩余的将NN的溶液正规化以满足理想MHD方程。该模型以高精度预测平衡解决方案,并忠实地重建了恒星优化中使用的全局平衡量和代理函数。我们还优化了W7-X磁性构型,可以根据快速粒子约束找到应有的配置。这项工作证明了准确性NN模型可以近似于3D Ideal-MHD解决方案操作员并重建感兴趣的平衡属性,并提出如何使用它们来优化恒星磁性构型。
The computational cost of constructing 3D magnetohydrodynamic (MHD) equilibria is one of the limiting factors in stellarator research and design. Although data-driven approaches have been proposed to provide fast 3D MHD equilibria, the accuracy with which equilibrium properties are reconstructed is unknown. In this work, we describe an artificial neural network (NN) that quickly approximates the ideal-MHD solution operator in Wendelstein 7-X (W7-X) configurations. This model fulfils equilibrium symmetries by construction. The MHD force residual regularizes the solution of the NN to satisfy the ideal-MHD equations. The model predicts the equilibrium solution with high accuracy, and it faithfully reconstructs global equilibrium quantities and proxy functions used in stellarator optimization. We also optimize W7-X magnetic configurations, where desiderable configurations can be found in terms of fast particle confinement. This work demonstrates with which accuracy NN models can approximate the 3D ideal-MHD solution operator and reconstruct equilibrium properties of interest, and it suggests how they might be used to optimize stellarator magnetic configurations.