论文标题
作为动态范围 - MHD湍流中的比例依赖能量动力学
As a matter of dynamical range -- scale dependent energy dynamics in MHD turbulence
论文作者
论文摘要
在许多天体物理和陆地等离子体中,磁化的湍流无处不在,但没有普遍理论。即使是磁流失动力(MHD)湍流中详细的能量动力学也不是很好的理解。我们提出了一套亚音速,超级alfvénic,高血浆-Beta MHD MHD湍流模拟,这些模拟仅在其动态范围内变化,即在大规模强迫和耗散量表之间的分离,以及它们的耗散机制(隐含的大型涡流模拟,iles,iles,versus versus和Direct Numenerical Simulation,dns)。使用能量转移分析框架,我们计算有效的,数值的粘度和电阻率并证明了MHD湍流的所有Iles计算,并对应于等效的抗Visco抗Visco的MHD湍流计算。增加静脉内使用的网格点的数量对应于降低耗散系数,即较大(动力学和磁性)雷诺数以恒定强迫量表。独立地,我们使用相同的框架来证明 - 与流体动力湍流相反 - 跨尺度能量通量在MHD湍流中并不恒定。这既适用于给定动力学范围的不同介体(例如级联过程或磁张力),也适用于对动态范围本身的依赖,这决定了流动的物理性质。即使在$ 2 {,} 048^3 $细胞的最高分辨率(最大的雷诺数)模拟中,我们也不会观察到收敛的任何迹象,质疑是否存在MHD湍流中的渐近状态,以及,如果是这样,它的外观。
Magnetized turbulence is ubiquitous in many astrophysical and terrestrial plasmas but no universal theory exists. Even the detailed energy dynamics in magnetohydrodynamic (MHD) turbulence are still not well understood. We present a suite of subsonic, super-Alfvénic, high plasma-beta MHD turbulence simulations that only vary in their dynamical range, i.e., in their separation between the large-scale forcing and dissipation scales, and their dissipation mechanism (implicit large eddy simulation, ILES, versus and direct numerical simulation, DNS). Using an energy transfer analysis framework we calculate the effective, numerical viscosities and resistivities and demonstrate and that all ILES calculations of MHD turbulence are resolved and correspond to an equivalent visco-resistive MHD turbulence calculation. Increasing the number of grid points used in an ILES corresponds to lowering the dissipation coefficients, i.e., larger (kinetic and magnetic) Reynolds numbers for a constant forcing scale. Independently, we use this same framework to demonstrate that -- contrary to hydrodynamic turbulence -- the cross-scale energy fluxes are not constant in MHD turbulence. This applies both to different mediators (such as cascade processes or magnetic tension) for a given dynamical range as well as to a dependence on the dynamical range itself, which determines the physical properties of the flow. We do not observe any indication of convergence even at the highest resolution (largest Reynolds numbers) simulation at $2{,}048^3$ cells, calling into question whether an asymptotic regime in MHD turbulence exists, and, if so, what it looks like.