论文标题

使用集体变量理解和消除各种蒙特卡洛的虚假模式

Understanding and eliminating spurious modes in variational Monte Carlo using collective variables

论文作者

Zhang, Huan, Webber, Robert J., Lindsey, Michael, Berkelbach, Timothy C., Weare, Jonathan

论文摘要

近年来,使用神经网络参数化代表变异蒙特卡洛(VMC)计算中的基态已引起了浓厚的兴趣。但是,正如我们在周期性海森堡自旋链的背景下所证明的那样,这种方法可以产生不可靠的波函数近似值。失败的最明显迹象之一是在训练过程中发生随机的,持续的尖峰。这些能量尖峰是由配置空间的区域引起的,这些区域由波函数密度过多代表,在机器学习文献中称为``杂种模式''。在详细探讨了这些虚假模式之后,我们证明了基于集体的基于可变的惩罚可以产生更大的训练程序,从而阻止了虚假模式的形成并提高了能量估计的准确性。由于惩罚方案的实施价格便宜,并且不是针对此处研究的特定模型的特定特定的,因此可以将其扩展到合理选择集体变量的VMC的其他应用程序。

The use of neural network parametrizations to represent the ground state in variational Monte Carlo (VMC) calculations has generated intense interest in recent years. However, as we demonstrate in the context of the periodic Heisenberg spin chain, this approach can produce unreliable wave function approximations. One of the most obvious signs of failure is the occurrence of random, persistent spikes in the energy estimate during training. These energy spikes are caused by regions of configuration space that are over-represented by the wave function density, which are called ``spurious modes'' in the machine learning literature. After exploring these spurious modes in detail, we demonstrate that a collective-variable-based penalization yields a substantially more robust training procedure, preventing the formation of spurious modes and improving the accuracy of energy estimates. Because the penalization scheme is cheap to implement and is not specific to the particular model studied here, it can be extended to other applications of VMC where a reasonable choice of collective variable is available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源