论文标题

用于多类型调查数据的贝叶斯分层模型,使用误差测量的空间相关的协变量

Bayesian Hierarchical Models For Multi-type Survey Data Using Spatially Correlated Covariates Measured With Error

论文作者

Nandy, Saikat, Holan, Scott H., Bradley, Jonathan R., Wikle, Christopher K.

论文摘要

我们介绍了贝叶斯分层模型,以预测可以从一个或多个类别的分布(例如Gaussian,Poisson,binmial等)中分布的高维表格调查数据。当使用潜在高斯流程(LGP)模型估算时,我们采用层次概括转换(HGT)模型的贝叶斯实施来处理非高斯数据模型的非混合性。调查数据通常容易出现高度的采样误差,我们使用容易用于测量误差的协变量以及没有任何此类误差的协变量。定义了经典的测量误差组件来处理协变量中的采样误差。提出的模型可以是高维模型,我们采用基本功能扩展的概念来提供有效的减小方法。 HGT组件将灵活性借给我们的模型,以在统一的潜在过程模型框架下合并多类型响应数据集。为了证明我们的方法的适用性,我们从模拟研究和由美国人口普查局的美国社区调查(ACS)组成的数据集(ACS)估计贫困阈值和ACS 5年5年期间县县县县中基数中位数住房中间住房成本的5年期限估算的数据集中提供了结果。

We introduce Bayesian hierarchical models for predicting high-dimensional tabular survey data which can be distributed from one or multiple classes of distributions (e.g., Gaussian, Poisson, Binomial, etc.). We adopt a Bayesian implementation of a Hierarchical Generalized Transformation (HGT) model to deal with the non-conjugacy of non-Gaussian data models when estimated using a Latent Gaussian Process (LGP) model. Survey data are usually prone to a high degree of sampling error, and we use covariates that are prone to measurement error as well as those free of any such error. A classical measurement error component is defined to deal with the sampling error in the covariates. The proposed models can be high-dimensional and we employ the notion of basis function expansions to provide an effective approach to dimension reduction. The HGT component lends flexibility to our model to incorporate multi-type response datasets under a unified latent process model framework. To demonstrate the applicability of our methodology, we provide the results from simulation studies and data applications arising from a dataset consisting of the U.S. Census Bureau's American Community Survey (ACS) 5-year period estimates of the total population count under the poverty threshold and the ACS 5-year period estimates of median housing costs at the county level across multiple states in the USA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源