论文标题
通过互动可视化学习健康公平和环境正义
Learning on Health Fairness and Environmental Justice via Interactive Visualization
论文作者
论文摘要
本文通过机器学习共识分析介绍了交互式可视化界面,使研究人员能够通过采用多个复发图神经网络探索大气和社会经济因素对COVID-19的临床严重性的影响。我们设计并实施了一个可视化界面,该界面利用协调的多视图来支持对住院和其他社会地理变量的探索性和预测分析,同时在多个维度上。通过利用几何深度学习的力量,我们建立了一个共识的机器学习模型,以包括县级记录的知识,并调查全球传染病,环境和社会正义之间的复杂相互关系。此外,我们利用独特的基于NASA卫星的观察结果,这些观察结果在气候正义应用程序的背景下不广泛使用。我们当前的交互式界面集中在美国三个州(加利福尼亚州,宾夕法尼亚州和德克萨斯州)上,以证明其科学价值,并提出了三个案例研究以进行定性评估。
This paper introduces an interactive visualization interface with a machine learning consensus analysis that enables the researchers to explore the impact of atmospheric and socioeconomic factors on COVID-19 clinical severity by employing multiple Recurrent Graph Neural Networks. We designed and implemented a visualization interface that leverages coordinated multi-views to support exploratory and predictive analysis of hospitalizations and other socio-geographic variables at multiple dimensions, simultaneously. By harnessing the strength of geometric deep learning, we build a consensus machine learning model to include knowledge from county-level records and investigate the complex interrelationships between global infectious disease, environment, and social justice. Additionally, we make use of unique NASA satellite-based observations which are not broadly used in the context of climate justice applications. Our current interactive interface focus on three US states (California, Pennsylvania, and Texas) to demonstrate its scientific value and presented three case studies to make qualitative evaluations.