论文标题

无限域约束满意度的计算捷径

Computational Short Cuts in Infinite Domain Constraint Satisfaction

论文作者

Jonsson, Peter, Lagerkvist, Victor, Ordyniak, Sebastian

论文摘要

有限域CSP实例中的后门是一组变量,其中每个可能的实例化将实例移至多项式时间可求解类。后门发现了许多在人工智能和其他地方的应用,因此对发现此类后门的算法问题进行了深入的研究。 Sioutis和Janhunen(Proc。42届德国人工智能会议(KI-2019))提出了一个广义的后门概念,适用于无限域CSP关于二进制约束的实例。我们将它们的概念推广到一大批CSP中,这些CSP允许进行更高的限制。我们表明,这种无限域后门具有有限域后门具有的许多积极计算属性:相关的计算问题是固定参数时,每当基础约束语言都是有限的时。另一方面,我们表明,无限语言使问题变得更加困难:一般的后门检测问题是W [2] - hard-hard,固定参数的障碍性在标准的复杂性理论假设下排除在外。我们证明了后门在二进制约束上可能具有次优行为 - 从AI的角度来看,这是有害的,在AI的角度上,二进制约束主要是时空应用。为此,我们引入了侧室,以替代后门。用于有限约束语言(可能还包含非二进制关系)的侧术的基本计算问题仍然可以进行固定参数。此外,侧向方法具有吸引人的计算属性,有时会导致比后门方法更快的算法。

A backdoor in a finite-domain CSP instance is a set of variables where each possible instantiation moves the instance into a polynomial-time solvable class. Backdoors have found many applications in artificial intelligence and elsewhere, and the algorithmic problem of finding such backdoors has consequently been intensively studied. Sioutis and Janhunen (Proc. 42nd German Conference on AI (KI-2019)) have proposed a generalised backdoor concept suitable for infinite-domain CSP instances over binary constraints. We generalise their concept into a large class of CSPs that allow for higher-arity constraints. We show that this kind of infinite-domain backdoors have many of the positive computational properties that finite-domain backdoors have: the associated computational problems are fixed-parameter tractable whenever the underlying constraint language is finite. On the other hand, we show that infinite languages make the problems considerably harder: the general backdoor detection problem is W[2]-hard and fixed-parameter tractability is ruled out under standard complexity-theoretic assumptions. We demonstrate that backdoors may have suboptimal behaviour on binary constraints -- this is detrimental from an AI perspective where binary constraints are predominant in, for instance, spatiotemporal applications. In response to this, we introduce sidedoors as an alternative to backdoors. The fundamental computational problems for sidedoors remain fixed-parameter tractable for finite constraint language (possibly also containing non-binary relations). Moreover, the sidedoor approach has appealing computational properties that sometimes leads to faster algorithms than the backdoor approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源