论文标题

基于模型的因果贝叶斯优化

Model-based Causal Bayesian Optimization

论文作者

Sussex, Scott, Makarova, Anastasiia, Krause, Andreas

论文摘要

我们应该如何干预未知的结构方程模型,以最大化感兴趣的下游变量?这种环境,也称为因果贝叶斯优化(CBO),在医学,生态和制造业中具有重要的应用。标准的贝叶斯优化算法无法有效利用基本因果结构。现有的CBO方法采用无噪声测量,并且没有保证。我们提出了基于模型的因果贝叶斯优化算法(MCBO),该算法(MCBO)学习了完整的系统模型,而不仅仅是建模干预奖励对。 MCBO通过图表传播了有关因果机制的认识不确定性,并通过乐观原则贸易探索和剥削。我们束缚了它的累积遗憾,并获得了CBO的第一个非反应界限。与标准的贝叶斯优化不同,我们的采集功能不能以封闭形式进行评估,因此我们展示了如何使用重聚技巧来应用基于梯度的优化器。 MCBO的实际实施与最先进的方法相比,经验上有利。

How should we intervene on an unknown structural equation model to maximize a downstream variable of interest? This setting, also known as causal Bayesian optimization (CBO), has important applications in medicine, ecology, and manufacturing. Standard Bayesian optimization algorithms fail to effectively leverage the underlying causal structure. Existing CBO approaches assume noiseless measurements and do not come with guarantees. We propose the model-based causal Bayesian optimization algorithm (MCBO) that learns a full system model instead of only modeling intervention-reward pairs. MCBO propagates epistemic uncertainty about the causal mechanisms through the graph and trades off exploration and exploitation via the optimism principle. We bound its cumulative regret, and obtain the first non-asymptotic bounds for CBO. Unlike in standard Bayesian optimization, our acquisition function cannot be evaluated in closed form, so we show how the reparameterization trick can be used to apply gradient-based optimizers. The resulting practical implementation of MCBO compares favorably with state-of-the-art approaches empirically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源