论文标题
关于雏菊的拉姆齐人数II
On the Ramsey number of daisies II
论文作者
论文摘要
$(k+m)上的$(k+r)$ - $ h $ h $(k+m)$顶点是$(r,m,k)$ - daisy-daisy如果存在pertices $ v(h)= k \ cup m $ with $ | k | k | k | k | k | = k $ = k $,$ | m | = m $ $ h $ $ h $( $ p $是$ m $ m $的$ r $ tuple。补充结果[“在Ramsey的雏菊号I”中,我们获得了$(r-2)$ - 迭代的指数下限,以$(R,M,K)$ -2 $ 2 $ - 色的Ramsey数字。这匹配了完整$ r $ grapl的Ramsey数量的最佳下限的数量级。
A $(k+r)$-uniform hypergraph $H$ on $(k+m)$ vertices is an $(r,m,k)$-daisy if there exists a partition of the vertices $V(H)=K\cup M$ with $|K|=k$, $|M|=m$ such that the set of edges of $H$ is all the $(k+r)$-tuples $K\cup P$, where $P$ is an $r$-tuple of $M$. Complementing results in ["On the Ramsey number of daisies I"], we obtain an $(r-2)$-iterated exponential lower bound to the Ramsey number of an $(r,m,k)$-daisy for $2$-colors. This matches the order of magnitude of the best lower bounds for the Ramsey number of a complete $r$-graph.