论文标题
C-A DNA力场测试
C-A test of DNA force fields
论文作者
论文摘要
DNA双链体可以在与蛋白质的复合物中,例如与聚合酶或核小体中的蛋白质相处。在这样的弯曲下,DNA螺旋在非典型的形式A(具有狭窄的主要凹槽和大量的北糖)或C(带有狭窄的小凹槽和大量的BII磷酸盐)中。为了通过分子动力学方法对这种复合物的形成进行建模,需要力场来重现裸体DNA的这些构象转变。我们在易于建模的条件下分析了B-C和B-A转变的可用实验数据:在NaCl水溶液中。我们选择了六种DNA双链体,它们在不同的盐浓度下的构象已足够可靠。在低盐浓度下,聚(GC)和聚(A)分别在B形中,经典,略微转移到A形式。双面ATAT和GGTATACC对A形式具有较强的盐浓度偏差。聚合物聚(AC)和聚(G)分别以高盐浓度采用C-和A形式。这些低聚物的行为的再现可以作为测试基础堆叠和DNA力场中糖磷酸主链构象柔韧性之间相互作用的平衡。我们测试了Amber BSC1和Charmm36力场及其杂种,但未能重现实验。在所有力场中,盐浓度依赖性非常弱。事实证明,琥珀色力场的已知B酚类是由于其过度强大的基础堆叠的B酚性而产生的。在CHARMM力场中,B形式是A-纤维基堆叠(尤其是G:C对)和C-苯基骨架之间脆弱平衡的结果。最后,我们分析了琥珀色力场框架中的laci-,sox-4-和sac7d-dna复合物形成的一些最新模拟。
The DNA duplex may be locally strongly bent in complexes with proteins, for example, with polymerases or in a nucleosome. At such bends, the DNA helix is locally in the non-canonical forms A (with a narrow major groove and a large amount of north sugars) or C (with a narrow minor groove and a large share of BII phosphates). To model the formation of such complexes by molecular dynamics methods, the force field is required to reproduce these conformational transitions for a naked DNA. We analyzed the available experimental data on the B-C and B-A transitions under the conditions easily implemented in modeling: in an aqueous NaCl solution. We selected six DNA duplexes which conformations at different salt concentrations are known reliably enough. At low salt concentrations, poly(GC) and poly(A) are in the B-form, classical and slightly shifted to the A-form, respectively. The duplexes ATAT and GGTATACC have a strong and salt concentration dependent bias toward the A-form. The polymers poly(AC) and poly(G) take the C- and A-forms, respectively, at high salt concentrations. The reproduction of the behavior of these oligomers can serve as a test for the balance of interactions between the base stacking and the conformational flexibility of the sugar-phosphate backbone in a DNA force field. We tested the AMBER bsc1 and CHARMM36 force fields and their hybrids, and we failed to reproduce the experiment. In all the force fields, the salt concentration dependence is very weak. The known B-philicity of the AMBER force field proved to result from the B-philicity of its excessively strong base stacking. In the CHARMM force field, the B-form is a result of a fragile balance between the A-philic base stacking (especially for G:C pairs) and the C-philic backbone. Finally, we analyzed some recent simulations of the LacI-, SOX-4-, and Sac7d-DNA complex formation in the framework of the AMBER force field.