论文标题

字体表示通过配对字形匹配

Font Representation Learning via Paired-glyph Matching

论文作者

Cho, Junho, Lee, Kyuewang, Choi, Jin Young

论文摘要

字体可以以各种形式的字形传达单词的深刻含义。没有排版知识,手动选择合适的字体或设计新字体是一项繁琐而痛苦的任务。为了允许用户探索庞大的字体样式并创建新的字体样式,已经提出了字体检索和字体样式传输方法。这些任务增加了学习高质量字体表示的需求。因此,我们提出了一种新颖的字体表示学习方案,将字体样式嵌入潜在空间中。对于其他其他字体的歧视性表示,我们提出了一个基于字形匹配的字体表示模型,该模型将同一字体中的字形的表示形式互相吸引,但将其他字体互相推开。通过对新字体上查询字形的字体检索的评估,我们显示了字体表示学习方案比现有的字体表示学习技术更好的概括性能。最后,在下游字体样式转移和发电任务上,我们通过建议的方法确认转移学习的好处。源代码可在https://github.com/junhocho/paired-glyph-matching上找到。

Fonts can convey profound meanings of words in various forms of glyphs. Without typography knowledge, manually selecting an appropriate font or designing a new font is a tedious and painful task. To allow users to explore vast font styles and create new font styles, font retrieval and font style transfer methods have been proposed. These tasks increase the need for learning high-quality font representations. Therefore, we propose a novel font representation learning scheme to embed font styles into the latent space. For the discriminative representation of a font from others, we propose a paired-glyph matching-based font representation learning model that attracts the representations of glyphs in the same font to one another, but pushes away those of other fonts. Through evaluations on font retrieval with query glyphs on new fonts, we show our font representation learning scheme achieves better generalization performance than the existing font representation learning techniques. Finally on the downstream font style transfer and generation tasks, we confirm the benefits of transfer learning with the proposed method. The source code is available at https://github.com/junhocho/paired-glyph-matching.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源