论文标题
部分可观测时空混沌系统的无模型预测
IWDM: The fate of an interacting non-cold dark matter $-$ vacuum scenario
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In most cosmological models, the equation of state of the dark matter is assumed to be zero, which means that the dark matter is pressure-less or cold. While this hypothesis is based on the abundance of cold dark matter in the universe, however, there is no compelling reason to assume that the equation of state of dark matter is exactly zero. A more general approach would be to allow for a range of values for the dark matter equation of state and use the observational data to determine which values are most likely. With the increasing accuracy of experimental data, we have chosen to explore the possibility of interacting non-cold dark matter $-$ vacuum scenario, where the equation of state of the dark matter is constant but can take different values within a specific range. Using the Cosmic Microwave Background (CMB) anisotropies and the CMB lensing reconstruction from the Planck legacy release, plus other non-CMB measurements, namely, the baryon acoustic oscillations distance measurements, and the Pantheon catalogue from Type Ia Supernovae, we have analyzed this scenario and found that a non-zero value for the dark matter equation of state is preferred with a confidence level of over 68\%. While this is not significant by itself, however, it does suggest that investigating the possibility of non-cold dark matter in the universe is worth exploring further to gain a better understanding of the nature of dark matter.