论文标题

基于视频改变衣服的人的基准重新识别

A Benchmark of Video-Based Clothes-Changing Person Re-Identification

论文作者

Wang, Likai, Zhang, Xiangqun, Han, Ruize, Yang, Jialin, Li, Xiaoyu, Feng, Wei, Wang, Song

论文摘要

人重新识别(RE-ID)是一项经典的计算机视觉任务,到目前为止取得了巨大进展。最近,长期的重新建立换衣服引起了人们越来越多的关注。但是,现有方法主要集中在基于图像的设置上,其中忽略了更丰富的时间信息。在本文中,我们专注于相对较新但实用的问题的基于衣服的人重新识别(CCVREID),该问题的研究较少。我们通过同时考虑服装不一致问题的挑战以及人重新ID问题的视频序列中包含的时间信息来系统地研究这个问题。基于此,我们开发了一个两分支的信心重新排列框架来处理CCVREID问题。提议的框架集成了两个分支,通过信心引导的重新排行策略,考虑了经典的外观特征和无布的步态特征。该方法提供了进一步研究的基线方法。此外,我们为CCVREID问题构建了两个新的基准数据集,包括一个大规模的合成视频数据集和一个现实世界中的一个,都包含带有各种服装变化的人类序列。我们将向公众发布这项工作的基准和代码。

Person re-identification (Re-ID) is a classical computer vision task and has achieved great progress so far. Recently, long-term Re-ID with clothes-changing has attracted increasing attention. However, existing methods mainly focus on image-based setting, where richer temporal information is overlooked. In this paper, we focus on the relatively new yet practical problem of clothes-changing video-based person re-identification (CCVReID), which is less studied. We systematically study this problem by simultaneously considering the challenge of the clothes inconsistency issue and the temporal information contained in the video sequence for the person Re-ID problem. Based on this, we develop a two-branch confidence-aware re-ranking framework for handling the CCVReID problem. The proposed framework integrates two branches that consider both the classical appearance features and cloth-free gait features through a confidence-guided re-ranking strategy. This method provides the baseline method for further studies. Also, we build two new benchmark datasets for CCVReID problem, including a large-scale synthetic video dataset and a real-world one, both containing human sequences with various clothing changes. We will release the benchmark and code in this work to the public.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源