论文标题
部分可观测时空混沌系统的无模型预测
Limit distribution theory for $f$-Divergences
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
$f$-divergences, which quantify discrepancy between probability distributions, are ubiquitous in information theory, machine learning, and statistics. While there are numerous methods for estimating $f$-divergences from data, a limit distribution theory, which quantifies fluctuations of the estimation error, is largely obscure. As limit theorems are pivotal for valid statistical inference, to close this gap, we develop a general methodology for deriving distributional limits for $f$-divergences based on the functional delta method and Hadamard directional differentiability. Focusing on four prominent $f$-divergences -- Kullback-Leibler divergence, $χ^2$ divergence, squared Hellinger distance, and total variation distance -- we identify sufficient conditions on the population distributions for the existence of distributional limits and characterize the limiting variables. These results are used to derive one- and two-sample limit theorems for Gaussian-smoothed $f$-divergences, both under the null and the alternative. Finally, an application of the limit distribution theory to auditing differential privacy is proposed and analyzed for significance level and power against local alternatives.