论文标题

替代银行指南的自我监督的3D横穿性估算

Self-Supervised 3D Traversability Estimation with Proxy Bank Guidance

论文作者

Bae, Jihwan, Seo, Junwon, Kim, Taekyung, Jeon, Hae-gon, Kwak, Kiho, Shim, Inwook

论文摘要

对越野环境中移动机器人的遍历性估计比在诸如公路条件之类的受约束环境中使用的传统语义分割需要更多。最近,以自我监督的方式从过去的驾驶经历中学习遍历性估计的方法正在产生,因为它们可以大大降低人类的标签成本和标记错误。但是,自我监管的数据仅为实际穿越的地区提供监督,从而根据负面信息的稀缺引起认知不确定性。负数据很少收获,因为在记录数据时可能会严重损坏该系统。为了减轻不确定性,我们引入了一种基于深度学习的方法,将未标记的数据与一些正面和负面原型合并在一起,以利用不确定性,该数据使用语义分割和遍历性回归共同学​​习。为了牢固评估所提出的框架,我们引入了一个新的评估指标,可以全面评估细分和回归。此外,我们使用移动机器人平台在越野环境中构建驾驶数据集`dtrail',该平台由多种负面数据组成。我们检查了有关DTRAIL的方法以及公开可用的Semantickitti数据集。

Traversability estimation for mobile robots in off-road environments requires more than conventional semantic segmentation used in constrained environments like on-road conditions. Recently, approaches to learning a traversability estimation from past driving experiences in a self-supervised manner are arising as they can significantly reduce human labeling costs and labeling errors. However, the self-supervised data only provide supervision for the actually traversed regions, inducing epistemic uncertainty according to the scarcity of negative information. Negative data are rarely harvested as the system can be severely damaged while logging the data. To mitigate the uncertainty, we introduce a deep metric learning-based method to incorporate unlabeled data with a few positive and negative prototypes in order to leverage the uncertainty, which jointly learns using semantic segmentation and traversability regression. To firmly evaluate the proposed framework, we introduce a new evaluation metric that comprehensively evaluates the segmentation and regression. Additionally, we construct a driving dataset `Dtrail' in off-road environments with a mobile robot platform, which is composed of a wide variety of negative data. We examine our method on Dtrail as well as the publicly available SemanticKITTI dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源