论文标题
部分可观测时空混沌系统的无模型预测
Next3D: Generative Neural Texture Rasterization for 3D-Aware Head Avatars
论文作者
论文摘要
3D感知的生成对抗网络(GANS)合成高保真性和多视图一致的面部图像仅使用单视2D图像的集合。为了对面部属性进行细粒度的控制,最近的工作结合了3D形态的面部模型(3DMM),以明确或隐式地描述生成辐射场中的变形。显式方法提供了细粒度的表达控制,但无法处理由头发和附件引起的拓扑变化,而隐式可以建模各种拓扑结构,但由于不受限制的变形场引起的概括有限。我们提出了一个新颖的3D GAN框架,用于从非结构化的2D图像中无监督的生成,高质量和3D一致的面部化身。为了达到变形精度和拓扑灵活性,我们提出了一个3D表示,称为生成纹理固定的三平面。所提出的表示形式在参数网格模板之上学习了生成的神经纹理,然后通过栅格化将它们投射到三个正交观看的特征平面中,从而形成了用于音量渲染的三平面特征表示。通过这种方式,我们结合了网格引导的显式变形的细粒表达控制和隐式体积表示的灵活性。我们进一步提出了用于建模口腔内部的特定模块,该模块未考虑3DMM。我们的方法通过广泛的实验证明了最新的3D感知合成质量和动画能力。此外,作为3D先验,我们的动画3D表示形式可以促进多个应用程序,包括一声面部化身和3D引用的风格化。
3D-aware generative adversarial networks (GANs) synthesize high-fidelity and multi-view-consistent facial images using only collections of single-view 2D imagery. Towards fine-grained control over facial attributes, recent efforts incorporate 3D Morphable Face Model (3DMM) to describe deformation in generative radiance fields either explicitly or implicitly. Explicit methods provide fine-grained expression control but cannot handle topological changes caused by hair and accessories, while implicit ones can model varied topologies but have limited generalization caused by the unconstrained deformation fields. We propose a novel 3D GAN framework for unsupervised learning of generative, high-quality and 3D-consistent facial avatars from unstructured 2D images. To achieve both deformation accuracy and topological flexibility, we propose a 3D representation called Generative Texture-Rasterized Tri-planes. The proposed representation learns Generative Neural Textures on top of parametric mesh templates and then projects them into three orthogonal-viewed feature planes through rasterization, forming a tri-plane feature representation for volume rendering. In this way, we combine both fine-grained expression control of mesh-guided explicit deformation and the flexibility of implicit volumetric representation. We further propose specific modules for modeling mouth interior which is not taken into account by 3DMM. Our method demonstrates state-of-the-art 3D-aware synthesis quality and animation ability through extensive experiments. Furthermore, serving as 3D prior, our animatable 3D representation boosts multiple applications including one-shot facial avatars and 3D-aware stylization.