论文标题

选项:优化算法基准定本学

OPTION: OPTImization Algorithm Benchmarking ONtology

论文作者

Kostovska, Ana, Vermetten, Diederick, Doerr, Carola, Džeroski, Saso, Panov, Panče, Eftimov, Tome

论文摘要

许多优化算法基准测试平台使用户可以共享其实验数据以促进可重复和可重复使用的研究。但是,不同的平台使用不同的数据模型和格式,这使相关数据集的识别,其解释及其互操作性极大地复杂化。因此,非常需要使用不同平台使用的基于语义丰富的基于本体的,基于本体的机器可读数据模型。在本文中,我们报告了这种本体论的发展,我们称之为选项(优化算法基准测试本体论)。我们的本体论提供了对基准过程中涉及的核心实体的语义注释所需的词汇,例如算法,问题和评估措施。它还提供了自动数据集成,改进的互操作性和强大的查询功能的手段,从而增加了基准数据的价值。我们通过注释和查询来自可可框架的BBOB集合的基准性能数据的语料库以及从Nevergrad环境的另一个Black-Box优化基准(Yabbob)家族中来证明选项的实用性。此外,我们使用探索性景观分析的公开数据集将BBOB功能性能格局的功能集成到期权知识库中。最后,我们将期权知识库集成到IOHProfiler环境中,并为用户提供对性能数据进行荟萃分析的能力。

Many optimization algorithm benchmarking platforms allow users to share their experimental data to promote reproducible and reusable research. However, different platforms use different data models and formats, which drastically complicates the identification of relevant datasets, their interpretation, and their interoperability. Therefore, a semantically rich, ontology-based, machine-readable data model that can be used by different platforms is highly desirable. In this paper, we report on the development of such an ontology, which we call OPTION (OPTImization algorithm benchmarking ONtology). Our ontology provides the vocabulary needed for semantic annotation of the core entities involved in the benchmarking process, such as algorithms, problems, and evaluation measures. It also provides means for automatic data integration, improved interoperability, and powerful querying capabilities, thereby increasing the value of the benchmarking data. We demonstrate the utility of OPTION, by annotating and querying a corpus of benchmark performance data from the BBOB collection of the COCO framework and from the Yet Another Black-Box Optimization Benchmark (YABBOB) family of the Nevergrad environment. In addition, we integrate features of the BBOB functional performance landscape into the OPTION knowledge base using publicly available datasets with exploratory landscape analysis. Finally, we integrate the OPTION knowledge base into the IOHprofiler environment and provide users with the ability to perform meta-analysis of performance data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源