论文标题

通过深度学习的3D检测和表征ALMA来源

3D Detection and Characterisation of ALMA Sources through Deep Learning

论文作者

Veneri, Michele Delli, Tychoniec, Lukasz, Guglielmetti, Fabrizia, Longo, Giuseppe, Villard, Eric

论文摘要

我们提出了一种深入学习(DL)管道,用于在模拟Atacama大型毫米/亚毫米阵列(ALMA)数据立方体中检测和表征天文来源。该管道由六个DL模型组成:用于集成数据立方体空间域内的源检测的卷积自动编码器,用于频域内的脱氧和峰值检测的复发神​​经网络(RNN),以及四个残留神经网络(RESNETS)用于源表征。空间和频率信息的组合可提高完整性,同时减少伪造信号检测。为了训练和测试管道,我们开发了一种模拟算法,能够产生逼真的ALMA观测值,即天空模型和肮脏的立方体。该算法始终模拟一个中央源,被散布在立方体中的淡淡的算法所包围。一些来源在空间上叠加,以测试管道排除功能。将管道的检测性能与其他方法的检测性能进行了比较,并实现了表现的显着改善。通过子像素精度检测到源形态,获得$ 10^{ - 3} $ PIXEL($ 0.1 $ MAS)和$ 10^{ - 1} $ MJY/BEAM的平均残差错误的平均剩余误差分别在位置和通量估计上。投影角度和通量密度也分别在测试集中所有来源的$ 80 \%$和$ 73 \%$的真实值的$ 10 \%$内回收。虽然我们的管道对ALMA数据进行了微调,但该技术适用于其他干涉观测值,例如SKA,Lofar,Vlbi和VLTI。

We present a Deep-Learning (DL) pipeline developed for the detection and characterization of astronomical sources within simulated Atacama Large Millimeter/submillimeter Array (ALMA) data cubes. The pipeline is composed of six DL models: a Convolutional Autoencoder for source detection within the spatial domain of the integrated data cubes, a Recurrent Neural Network (RNN) for denoising and peak detection within the frequency domain, and four Residual Neural Networks (ResNets) for source characterization. The combination of spatial and frequency information improves completeness while decreasing spurious signal detection. To train and test the pipeline, we developed a simulation algorithm able to generate realistic ALMA observations, i.e. both sky model and dirty cubes. The algorithm simulates always a central source surrounded by fainter ones scattered within the cube. Some sources were spatially superimposed in order to test the pipeline deblending capabilities. The detection performances of the pipeline were compared to those of other methods and significant improvements in performances were achieved. Source morphologies are detected with subpixel accuracies obtaining mean residual errors of $10^{-3}$ pixel ($0.1$ mas) and $10^{-1}$ mJy/beam on positions and flux estimations, respectively. Projection angles and flux densities are also recovered within $10\%$ of the true values for $80\%$ and $73\%$ of all sources in the test set, respectively. While our pipeline is fine-tuned for ALMA data, the technique is applicable to other interferometric observatories, as SKA, LOFAR, VLBI, and VLTI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源