论文标题

部分可观测时空混沌系统的无模型预测

Imputation of Missing Streamflow Data at Multiple Gauging Stations in Benin Republic

论文作者

Mbuvha, Rendani, Adounkpe, Julien Yise Peniel, Mongwe, Wilson Tsakane, Houngnibo, Mandela, Newlands, Nathaniel, Marwala, Tshilidzi

论文摘要

流量观测数据对于洪水监测,农业和定居计划至关重要。但是,由于各种原因(例如恶劣的环境条件和受限的操作资源),这种流量数据通常会困扰着缺少的观察结果。在撒哈拉以南非洲等资源不足的地区,这个问题通常更普遍。在这项工作中,我们通过在贝宁共和国的十个河流测量站的偏见校正ECMWF流量服务(GESS)预测来重建流汇时间序列数据。我们通过在受限的训练期内拟合分位数映射,高斯工艺和弹性净回归来进行偏差校正。我们通过模拟测试期间的遗失表明,GESS的预测具有很大的偏见,从而在十个贝宁车站上产生了低预测能力。我们的发现表明,通过弹性网和高斯工艺回归的总体偏见校正相对于随机森林,k-nearest邻居和Gess查找的传统插补,可以提高技能。这项工作的发现为将全球GESS流流数据数据整合到经营的早期巡游决策系统(例如洪水警报)中的基础,这是由于极端天气事件而容易受到干旱和洪水袭击的国家。

Streamflow observation data is vital for flood monitoring, agricultural, and settlement planning. However, such streamflow data are commonly plagued with missing observations due to various causes such as harsh environmental conditions and constrained operational resources. This problem is often more pervasive in under-resourced areas such as Sub-Saharan Africa. In this work, we reconstruct streamflow time series data through bias correction of the GEOGloWS ECMWF streamflow service (GESS) forecasts at ten river gauging stations in Benin Republic. We perform bias correction by fitting Quantile Mapping, Gaussian Process, and Elastic Net regression in a constrained training period. We show by simulating missingness in a testing period that GESS forecasts have a significant bias that results in low predictive skill over the ten Beninese stations. Our findings suggest that overall bias correction by Elastic Net and Gaussian Process regression achieves superior skill relative to traditional imputation by Random Forest, k-Nearest Neighbour, and GESS lookup. The findings of this work provide a basis for integrating global GESS streamflow data into operational early-warning decision-making systems (e.g., flood alert) in countries vulnerable to drought and flooding due to extreme weather events.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源