论文标题

解开表示的学习

Disentangled Representation Learning

论文作者

Wang, Xin, Chen, Hong, Tang, Si'ao, Wu, Zihao, Zhu, Wenwu

论文摘要

解开的表示学习(DRL)旨在学习一个能够识别和解开以表示形式的可观察数据中隐藏的基本因素的模型。将变异的潜在因素分为具有语义的变量的过程,含义在学习数据的可解释表示方面的好处,这在观察对象或关系时模仿了人类的有意义的理解过程。作为一般学习策略,DRL展示了其在改善模型的解释性,可控制性,鲁棒性以及在各种场景(例如计算机视觉,自然语言处理和数据挖掘)中的概括能力方面的力量。在本文中,我们从各个方面进行了全面研究DRL,包括动机,定义,方法,评估,应用和模型设计。我们首先介绍了两个公认的定义,即直观定义和群体理论定义,用于分离表示学习。我们将DRL的方法从以下角度分为四组,即模型类型,表示结构,监督信号和独立性假设。我们还分析了设计不同的DRL模型的原则,这些模型可能会受益于实际应用中的不同任务。最后,我们指出了DRL的挑战以及值得未来调查的潜在研究方向。我们认为,这项工作可能会为促进社区的DRL研究提供见解。

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, and data mining. In this article, we comprehensively investigate DRL from various aspects including motivations, definitions, methodologies, evaluations, applications, and model designs. We first present two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition for disentangled representation learning. We further categorize the methodologies for DRL into four groups from the following perspectives, the model type, representation structure, supervision signal, and independence assumption. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源