论文标题

Splitnet:可学习的清洁噪声标签,以嘈杂的标签学习用于学习

SplitNet: Learnable Clean-Noisy Label Splitting for Learning with Noisy Labels

论文作者

Kim, Daehwan, Ryoo, Kwangrok, Cho, Hansang, Kim, Seungryong

论文摘要

用高质量标签注释数据集对于深层网络的性能至关重要,但是在现实世界中,标签通常被噪声污染。为了解决这个问题,提出了一些方法来自动拆分干净和嘈杂的标签,并在嘈杂的标签(LNL)框架的学习中学习半监督的学习者。但是,他们利用手工制作的模块进行清洁噪声标签分裂,这在半监督学习阶段引起了确认偏见,并限制了性能。在本文中,我们首次提出了一个可学习的模块,用于清洁噪声标签分裂,称为Splitnet和一个新颖的LNL框架,该框架互补地训练Splitnet和主要网络,以实现LNL任务。我们建议使用SplitNet基于分裂置信度的动态阈值,以更好地优化半监督的学习者。为了增强拆分网络训练,我们还提出了一种风险对冲方法。我们提出的方法在最先进的水平上执行,尤其是在各种LNL基准测试的高噪声比率下进行的。

Annotating the dataset with high-quality labels is crucial for performance of deep network, but in real world scenarios, the labels are often contaminated by noise. To address this, some methods were proposed to automatically split clean and noisy labels, and learn a semi-supervised learner in a Learning with Noisy Labels (LNL) framework. However, they leverage a handcrafted module for clean-noisy label splitting, which induces a confirmation bias in the semi-supervised learning phase and limits the performance. In this paper, we for the first time present a learnable module for clean-noisy label splitting, dubbed SplitNet, and a novel LNL framework which complementarily trains the SplitNet and main network for the LNL task. We propose to use a dynamic threshold based on a split confidence by SplitNet to better optimize semi-supervised learner. To enhance SplitNet training, we also present a risk hedging method. Our proposed method performs at a state-of-the-art level especially in high noise ratio settings on various LNL benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源