论文标题
通过机会约束的多代理增强学习对云的合作超额订购
Learning Cooperative Oversubscription for Cloud by Chance-Constrained Multi-Agent Reinforcement Learning
论文作者
论文摘要
过度订购是改善云资源利用率的普遍做法。假设并非所有用户都会同时完全利用这些资源,它允许云服务提供商出售比物理限制更多的资源。但是,如何设计过度订购政策,以改善利用率,同时满足某些安全限制仍然是一个开放的问题。现有的方法和工业实践过于保守,忽略了各种资源使用模式和概率约束的协调。为了解决这两个局限性,本文将云的过度订阅作为偶然受限的优化问题,并提出了有效的偶然限制的多代理增强学习方法(C2MARL)方法来解决此问题。具体而言,C2MARL通过考虑其上限并利用多代理强化学习范式来学习安全,最佳的协调政策,从而减少了约束数量。我们在内部云平台和公共云数据集上评估我们的C2MARL。实验表明,在不同级别的安全约束下,我们的C2MARL优于改善利用率的现有方法($ 20 \%\ sim 86 \%$)。
Oversubscription is a common practice for improving cloud resource utilization. It allows the cloud service provider to sell more resources than the physical limit, assuming not all users would fully utilize the resources simultaneously. However, how to design an oversubscription policy that improves utilization while satisfying the some safety constraints remains an open problem. Existing methods and industrial practices are over-conservative, ignoring the coordination of diverse resource usage patterns and probabilistic constraints. To address these two limitations, this paper formulates the oversubscription for cloud as a chance-constrained optimization problem and propose an effective Chance Constrained Multi-Agent Reinforcement Learning (C2MARL) method to solve this problem. Specifically, C2MARL reduces the number of constraints by considering their upper bounds and leverages a multi-agent reinforcement learning paradigm to learn a safe and optimal coordination policy. We evaluate our C2MARL on an internal cloud platform and public cloud datasets. Experiments show that our C2MARL outperforms existing methods in improving utilization ($20\%\sim 86\%$) under different levels of safety constraints.