论文标题

用于WasSerstein判别分析的双层非线性特征向量算法

A Bi-level Nonlinear Eigenvector Algorithm for Wasserstein Discriminant Analysis

论文作者

Roh, Dong Min, Bai, Zhaojun, Li, Ren-Cang

论文摘要

就像经典的Fisher线性判别分析(LDA)一样,最近提出的Wasserstein判别分析(WDA)是一种线性降低降低方法,它寻求一个投影矩阵,以最大程度地扩展不同数据类别的分散,并通过双层优化的优化来最大程度地减少相同数据类别的分散体。与LDA相反,WDA可以使用最佳运输的基本原理来考虑数据类之间的全球和局部互连。在本文中,提出了双层非线性特征向量算法(WDA-NEPV),以充分利用WDA的双层优化的结构。用于计算最佳传输矩阵的WDA-NEPV的内部水平被公式为特征向量依赖性非线性特征值问题(NEPV),同时,痕量比率优化的外部水平被表述为另一种NEPV。两个NEPV可以在自洽场(SCF)框架下有效计算。与现有算法相比,WDA-NEPV无衍生物和替代模式。对所提出的WDA-NEPV的收敛分析证明了SCF解决WDA的双层优化的利用合理。合成和现实生活数据集的数值实验证明了WDA-NEPV的分类准确性和可扩展性。

Much like the classical Fisher linear discriminant analysis (LDA), the recently proposed Wasserstein discriminant analysis (WDA) is a linear dimensionality reduction method that seeks a projection matrix to maximize the dispersion of different data classes and minimize the dispersion of same data classes via a bi-level optimization. In contrast to LDA, WDA can account for both global and local interconnections between data classes by using the underlying principles of optimal transport. In this paper, a bi-level nonlinear eigenvector algorithm (WDA-nepv) is presented to fully exploit the structures of the bi-level optimization of WDA. The inner level of WDA-nepv for computing the optimal transport matrices is formulated as an eigenvector-dependent nonlinear eigenvalue problem (NEPv), and meanwhile, the outer level for trace ratio optimizations is formulated as another NEPv. Both NEPvs can be computed efficiently under the self-consistent field (SCF) framework. WDA-nepv is derivative-free and surrogate-model-free when compared with existing algorithms. Convergence analysis of the proposed WDA-nepv justifies the utilization of the SCF for solving the bi-level optimization of WDA. Numerical experiments with synthetic and real-life datasets demonstrate the classification accuracy and scalability of WDA-nepv.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源