论文标题
强大的高维气免费多次测试
Robust High-dimensional Tuning Free Multiple Testing
论文作者
论文摘要
高维数据的程式化特征是许多变量具有沉重的尾巴,鲁棒的统计推断对于有效的大规模统计推断至关重要。然而,现有的发展,例如温吸引,huberization和Menemen的中位数,需要限制的第二瞬间,并涉及可变依赖性的调谐参数,这阻碍了它们在对大规模问题的应用中的保真度。为了解放这些限制,本文从非反应的观点中重新审视了著名的Hodges-Lehmann(HL)估计器,以估算单样本问题和两样本问题的位置参数。我们的研究基于新开发的非反应巴哈杜尔代表制,开发了HL估计量的Berry-Esseen不平等和CRAMér类型中度偏差,并通过加权自举方法构建了数据驱动的置信区间。这些结果使我们能够将HL估计量扩展到大规模研究,并提出\ emph {无调}和\ emph {无矩}高维推理程序,用于测试全局空和大规模多重测试,并具有错误的发现比例控制。令人信服地表明,由此产生的无调和无矩的方法控制着规定级别的错误发现比例。仿真研究为我们发达的理论提供了进一步的支持。
A stylized feature of high-dimensional data is that many variables have heavy tails, and robust statistical inference is critical for valid large-scale statistical inference. Yet, the existing developments such as Winsorization, Huberization and median of means require the bounded second moments and involve variable-dependent tuning parameters, which hamper their fidelity in applications to large-scale problems. To liberate these constraints, this paper revisits the celebrated Hodges-Lehmann (HL) estimator for estimating location parameters in both the one- and two-sample problems, from a non-asymptotic perspective. Our study develops Berry-Esseen inequality and Cramér type moderate deviation for the HL estimator based on newly developed non-asymptotic Bahadur representation, and builds data-driven confidence intervals via a weighted bootstrap approach. These results allow us to extend the HL estimator to large-scale studies and propose \emph{tuning-free} and \emph{moment-free} high-dimensional inference procedures for testing global null and for large-scale multiple testing with false discovery proportion control. It is convincingly shown that the resulting tuning-free and moment-free methods control false discovery proportion at a prescribed level. The simulation studies lend further support to our developed theory.