论文标题
一个全部,全部:学习和转移用户嵌入跨域建议
One for All, All for One: Learning and Transferring User Embeddings for Cross-Domain Recommendation
论文作者
论文摘要
跨域建议是提高推荐系统性能的重要方法,尤其是当目标域中的观察很少时。但是,大多数现有技术都集中在单目标或双目标跨域推荐(CDR)上,并且很难将其推广到具有多个目标域的CDR。此外,在CDR中,负转移问题很普遍,在CDR中,目标域中的建议性能并非总是通过从源域中学到的知识来增强的,尤其是当源域的数据稀疏时。在这项研究中,我们提出了一种多目标CDR方法Cat-Art,该方法学会通过表示学习和嵌入转移来改善所有参与域中的建议。我们的方法由两个部分组成:一个自我监管的对比自动编码器(CAT)框架,以基于所有参与域的信息生成全局用户嵌入,以及基于注意力的表示转移(ART)框架,该框架转移了域特异性用户嵌入其他域,以帮助目标域建议。 Cat-Art通过从其他域中转移的全局用户表示形式和知识的联合使用来提高任何目标域中的建议性能,此外原始用户嵌入了目标域中。我们对跨越5个域并涉及一百万用户的现实世界中的CDR数据集进行了广泛的实验。实验结果证明了所提出的方法比一系列先前的艺术的优越性。我们进一步进行了消融研究,以验证所提出的组件的有效性。我们收集的数据集将被开源,以促进多域推荐系统和用户建模领域的未来研究。
Cross-domain recommendation is an important method to improve recommender system performance, especially when observations in target domains are sparse. However, most existing techniques focus on single-target or dual-target cross-domain recommendation (CDR) and are hard to be generalized to CDR with multiple target domains. In addition, the negative transfer problem is prevalent in CDR, where the recommendation performance in a target domain may not always be enhanced by knowledge learned from a source domain, especially when the source domain has sparse data. In this study, we propose CAT-ART, a multi-target CDR method that learns to improve recommendations in all participating domains through representation learning and embedding transfer. Our method consists of two parts: a self-supervised Contrastive AuToencoder (CAT) framework to generate global user embeddings based on information from all participating domains, and an Attention-based Representation Transfer (ART) framework which transfers domain-specific user embeddings from other domains to assist with target domain recommendation. CAT-ART boosts the recommendation performance in any target domain through the combined use of the learned global user representation and knowledge transferred from other domains, in addition to the original user embedding in the target domain. We conducted extensive experiments on a collected real-world CDR dataset spanning 5 domains and involving a million users. Experimental results demonstrate the superiority of the proposed method over a range of prior arts. We further conducted ablation studies to verify the effectiveness of the proposed components. Our collected dataset will be open-sourced to facilitate future research in the field of multi-domain recommender systems and user modeling.