论文标题

Semanticloop:3D语义图匹配的循环闭合

SemanticLoop: loop closure with 3D semantic graph matching

论文作者

Yu, Junfeng, Shen, Shaojie

论文摘要

循环闭合可以有效地纠正机器人定位中的累积误差,该误差在机器人的长期导航中起着至关重要的作用。传统的基于外观的方法依赖于本地特征,并且在模棱两可的环境中容易失败。另一方面,对象识别可以推断对象的类别,姿势和程度。这些对象可以用作稳定的语义地标,用于与观点无关和非歧义环闭合。但是,由于缺乏有效且健壮的算法,存在关键的对象级数据关联问题。 我们介绍了一种新颖的对象级数据关联算法,该算法结合了IOU,实例级嵌入和检测不确定性,以线性分配问题的形式提出。然后,我们将对象建模为TSDF卷,并将环境表示为具有语义和拓扑的3D图。接下来,我们根据重建的3D语义图提出了一个基于图匹配的循环检测,并通过对齐匹配的对象来纠正累积误差。最后,我们在对象级姿势图优化中完善对象姿势和摄像机轨迹。 实验结果表明,所提出的对象级数据关联方法在准确性方面显着优于通常使用的最近邻居方法。与现有的基于外观的方法相比,我们的基于图匹配的环路闭合对环境外观的变化更强大。

Loop closure can effectively correct the accumulated error in robot localization, which plays a critical role in the long-term navigation of the robot. Traditional appearance-based methods rely on local features and are prone to failure in ambiguous environments. On the other hand, object recognition can infer objects' category, pose, and extent. These objects can serve as stable semantic landmarks for viewpoint-independent and non-ambiguous loop closure. However, there is a critical object-level data association problem due to the lack of efficient and robust algorithms. We introduce a novel object-level data association algorithm, which incorporates IoU, instance-level embedding, and detection uncertainty, formulated as a linear assignment problem. Then, we model the objects as TSDF volumes and represent the environment as a 3D graph with semantics and topology. Next, we propose a graph matching-based loop detection based on the reconstructed 3D semantic graphs and correct the accumulated error by aligning the matched objects. Finally, we refine the object poses and camera trajectory in an object-level pose graph optimization. Experimental results show that the proposed object-level data association method significantly outperforms the commonly used nearest-neighbor method in accuracy. Our graph matching-based loop closure is more robust to environmental appearance changes than existing appearance-based methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源