论文标题
BASM:一种自下而上的自适应时空模型,用于在线食品订购服务
BASM: A Bottom-up Adaptive Spatiotemporal Model for Online Food Ordering Service
论文作者
论文摘要
在线食品订购服务(OFOS)是一项受欢迎的基于位置的服务,可帮助人们订购您想要的东西。与传统的电子商务推荐系统相比,在不同的时空环境下,用户的兴趣可能会有所不同,从而导致各种时空数据分布,从而限制了模型的拟合能力。但是,许多当前的作品只是将所有样品混合以训练一组模型参数,这使得在不同时空环境中很难捕获多样性。因此,我们通过提出一个自下而上的自适应时空模型(BASM)来应对这一挑战,以适应时空数据分布,从而进一步提高模型的拟合能力。具体而言,时空感知的嵌入层对特征嵌入中的场粒度进行重量适应,以实现动态感知时空环境的目的。同时,我们提出了一个时空的语义转换层,以明确将原始语义的串联输入转换为时空语义,这可以进一步增强不同时空环境下的语义表示。此外,我们引入了一种新型的时空自适应偏置塔,以捕获各种时空偏见,从而减少了对时空区别的难度。为了进一步验证BASM的有效性,我们还新颖地提出了两个新的指标,即时周期的AUC(TAUC)和城市AUC(CAUC)。对公共和工业数据集进行了广泛的离线评估,以证明我们提出的Modle的有效性。在线A/B实验还进一步说明了模型在线服务的实用性。现在,该提出的方法已在中国的主要在线食品订购平台Ele.me上实施,为超过1亿个在线用户提供服务。
Online Food Ordering Service (OFOS) is a popular location-based service that helps people to order what you want. Compared with traditional e-commerce recommendation systems, users' interests may be diverse under different spatiotemporal contexts, leading to various spatiotemporal data distribution, which limits the fitting capacity of the model. However, numerous current works simply mix all samples to train a set of model parameters, which makes it difficult to capture the diversity in different spatiotemporal contexts. Therefore, we address this challenge by proposing a Bottom-up Adaptive Spatiotemporal Model(BASM) to adaptively fit the spatiotemporal data distribution, which further improve the fitting capability of the model. Specifically, a spatiotemporal-aware embedding layer performs weight adaptation on field granularity in feature embedding, to achieve the purpose of dynamically perceiving spatiotemporal contexts. Meanwhile, we propose a spatiotemporal semantic transformation layer to explicitly convert the concatenated input of the raw semantic to spatiotemporal semantic, which can further enhance the semantic representation under different spatiotemporal contexts. Furthermore, we introduce a novel spatiotemporal adaptive bias tower to capture diverse spatiotemporal bias, reducing the difficulty to model spatiotemporal distinction. To further verify the effectiveness of BASM, we also novelly propose two new metrics, Time-period-wise AUC (TAUC) and City-wise AUC (CAUC). Extensive offline evaluations on public and industrial datasets are conducted to demonstrate the effectiveness of our proposed modle. The online A/B experiment also further illustrates the practicability of the model online service. This proposed method has now been implemented on the Ele.me, a major online food ordering platform in China, serving more than 100 million online users.