论文标题
重建图像扫描显微镜数据集:一个反问题
Reconstructing the Image Scanning Microscopy Dataset: an Inverse Problem
论文作者
论文摘要
共聚焦激光扫描显微镜(CLSM)是荧光成像最流行的光学体系结构之一。在CLSM中,聚焦的激光束从特定的试样位置激发了荧光发射。一些执行器扫描样品上的探测区域,光电探测器为每个扫描点收集一个单个强度值,从而构建二维图像像素逐像素。最近,新的快速单光子阵列探测器允许记录每个扫描点的探测区域的完整双维图像,从而将CLSM转换为图像扫描显微镜(ISM)。后者对传统成像进行了重大改进,但需要一种最佳的处理工具来从四维数据集中提取超级分辨图像。在这里,我们从统计的角度描述了ISM中的图像形成过程,我们使用贝叶斯框架来制定多图像反卷积问题。值得注意的是,单光子检测器仅受光子射击噪声的影响,从而能够开发有效的可能性模型。我们得出了一种迭代可能性最大化算法并在实验和模拟数据上测试它。此外,我们证明了ISM数据集是冗余的,从而有可能在扫描步骤中获得两倍的重建采样的可能性。我们的结果证明,在ISM中,在适当的条件下,Nyquist-Shannon采样标准有效地放宽了。可以利用这一发现以加快四倍的收购过程,从而进一步提高ISM系统的多功能性。
Confocal laser-scanning microscopy (CLSM) is one of the most popular optical architectures for fluorescence imaging. In CLSM, a focused laser beam excites the fluorescence emission from a specific specimen position. Some actuators scan the probed region across the sample and a photodetector collects a single intensity value for each scan point, building a two-dimensional image pixel-by-pixel. Recently, new fast single-photon array detectors have allowed the recording of a full bi-dimensional image of the probed region for each scan point, transforming CLSM into image scanning microscopy (ISM). This latter offers significant improvements over traditional imaging but requires an optimal processing tool to extract a super-resolved image from the four-dimensional dataset. Here we describe the image formation process in ISM from a statistical point of view, and we use the Bayesian framework to formulate a multi-image deconvolution problem. Notably, the single-photon detector suffers exclusively from the photon shot noise, enabling the development of an effective likelihood model. We derive an iterative likelihood maximization algorithm and test it on experimental and simulated data. Furthermore, we demonstrate that the ISM dataset is redundant, enabling the possibility of obtaining reconstruction sampled at twice the scanning step. Our results prove that in ISM, under appropriate conditions, the Nyquist-Shannon sampling criterium is effectively relaxed. This finding can be exploited to speed up the acquisition process by a factor of four, further improving the versatility of ISM systems.